
Relational reasoning via probabilistic coupling

Gilles Barthe1, Thomas Espitau1,2, Benjamin Grégoire3, Justin Hsu4,
Léo Stefanesco1,5, and Pierre-Yves Strub1

1 IMDEA Software 2 ENS Cachan 3 Inria
4 University of Pennsylvania 5 ENS Lyon

Abstract. Probabilistic coupling is a powerful tool for analyzing prob-
abilistic processes. Roughly, coupling two processes requires finding an
appropriate witness process that characterizes both processes in the
same probability space. Applications of coupling include reasoning about
convergence of distributions, and stochastic dominance—a probabilistic
version of a monotonicity property.
While the mathematical definition of coupling looks rather complex
and difficult to manipulate, we show that the relational program logic
pRHL—the logic underlying the EasyCrypt cryptographic proof assistant—
internalizes a generalization of probabilistic coupling. We demonstrate
how to express and verify classic examples of couplings in pRHL, and we
mechanically verifying several couplings in EasyCrypt.

1 Introduction

Probabilistic couplings [9, 7, 10] are a powerful mathematical tool for reasoning
about pairs of probabilistic processes: streams of values that evolve randomly
according to some rule. While the two processes may be difficult to analyze
independently, a probabilistic coupling arranges processes {ui}, {vi} in the same
space—for the simplest form of couplings, by viewing the pair of processes as
randomly evolving pairs of values {(ui, vi)}—while ensuring certain coupling
requirements. In this way, a coupling can coordinate the samples between the
two processes so that the coupled process satisfies certain properties.

From the point of view of program verification, a coupling is a relational
program property, which describes the relation between two programs (perhaps
one program run on two different inputs, or two completely different programs).
At first, it may seem that coupling is merely a single example of a relational
property, but coupling is a particularly interesting property for several reasons.

Useful consequences. Couplings are known to imply many other relational prop-
erties, and are often used as a tool in mathematical proofs.

A classic use of coupling is showing that the distribution of the value of
two random processes started in different locations eventually converges to the
same distribution if we run the processes long enough. This property is a kind
of memorylessness—or Markovian—property: The long-term behavior of the
process is independent of where it started from. To prove memorylessness, the

typical strategy is to couple the two processes so that their values move closer
together; once the values meet, the two processes move together, yielding the
same distribution.

A different use of couplings is showing that one (numeric-valued) process
is, in some sense, bigger than the other. This statement has to be interpreted
carefully—since both processes evolve independently, we can’t guarantee that
one process is always larger than the other on all traces. Stochastic domination
turns out to be the right definition: for any k, we require Pr[u ≥ k] > Pr[v ≥ k].
To verify this property, it is sufficient to find a coupling of a particular form.

Relational from non-relational. In many examples, the behavior of the second
coupled process is specified by the behavior of the first; in such cases, the coupling
allows us to reason just about the first process. In other words, a coupling allows
us to prove certain relational properties as a property of a single program.

Compositional proofs. Not only is coupling a useful property, proofs of coupling
are also intriguing. Typically, couplings are proved by considering corresponding
samples of the two processes, step by step; paper proofs call this process “building
a coupling”, reflecting the piecewise construction of the proof. In this sense,
couplings can be proved locally by considering small pieces of the programs in
isolation. This feature greatly simplifies mechanical verification of couplings.

Contributions

In this paper, we apply relational program verification to probabilistic couplings.
While the mathematical definition of coupling is rather involved and seemingly far
from program verification technology, our primary insight is that the logic pRHL
from Barthe, Grégoire, and Zanella Béguelin [2] already internalizes coupling in
disguise. More precisely, pRHL is built around a lifting construction, which turns a
relation R on two sets A and B into a relation R† over the set of sub-distributions
over A and the set of sub-distributions over B. Two programs are related by R†
precisely when there exists a coupling of their output sub-distributions whose
support only contains pairs of values (u, v) which satisfy R.

This observation has three immediate consequences. First, by selecting the
relation R appropriately, we can model a wide variety of coupling properties,
like distribution equivalence and stochastic domination. Second, by utilizing the
proof system of pRHL, we have a convenient method for constructing couplings
by reasoning about the programs while abstracting away the underlying details of
the coupling. Finally, we can leverage EasyCrypt, a proof assistant implementing
an extended version of pRHL, to mechanical verify couplings.

2 Preliminaries

Probabilistic coupling. We begin by giving an overview of probabilistic coupling.
As we described before, a coupling places two probabilistic processes (viewed as
probability distributions) in the same probabilistic space.

We will work with sub-distributions over discrete (finite or countable) sets.
A sub-distribution µ over a discrete set A is a function A → [0, 1] such that∑

a∈A µ(a) ≤ 1, and its support supp(µ) is the pre-image of (0, 1]. We letDistr(A)
denote the set of sub-distributions over A. Every sub-distribution can be given a
monadic structure; the unit operator maps every element a in the underlying set
to its Dirac distribution δa and the monadic composition bind(µ, F) ∈ Distr(B)
of µ ∈ Distr(A) and F : A→ Distr(B) is bind(µ, F)(b) =

∑
a∈A µ(a)×F (a)(b).

When working with sub-distributions over tuples, the probabilistic versions
of the usual projections on tuples are called marginals. The first and second
marginals π1(µ) and π2(µ) of a distribution µ over A×B are defined by π1(µ)(a) =∑
b∈B µ(a, b) and π2(µ)(b) =

∑
a∈A µ(a, b).

We can now formally define coupling.

Definition 1. The Frechet class F(µ1, µ2) of two sub-distributions µ1 and µ2

over A and B respectively is the set of sub-distributions µ over A×B such that
π1(µ) = µ1 and π2(µ) = µ2. Two distributions µ1, µ2 are said to be coupled with
witness µ if µ ∈ F(µ1, µ2), i.e. µ is in the Frechet class of µ1, µ2.

Lifting relations. Before introducing pRHL, we describe the lifting construction.
This operation allows pRHL to make statements about pairs of (sub-)distributions,
and is a generalized form of probabilistic coupling.

The idea is to define a family of couplings based on the support of the witness
distribution. Given a relation R ⊆ A×B and two distributions µ1 and µ2 over
A and B respectively, we let LR(µ1, µ2) denote the subset of sub-distributions
µ ∈ F(µ1, µ2) such that supp(µ) ⊆ R. Given a ground relation R, we view
distributions in LR as witnesses for a lifted relation on distributions.

Definition 2. The lifting of a relation R ⊆ A × B is the relation R† ⊆
Distr(A)×Distr(B) with µ1 R

† µ2 iff LR(µ1, µ2) 6= ∅.

Before turning to the definition of pRHL, we give some intuition for why
lifting is useful. Roughly, if we know two distributions are related by a lifted
relation R†, we can treat two samples from the distribution as if they were related
by R. In other words, the lifting machinery gives a powerful way to translate
between information about distributions and information about samples. Deng
and Du [6] provide an excellent introductory exposition to lifting, and give several
equivalent characterizations of lifting, including an inductive definition and a
definition based on maximal flows.

2.1 A pRHL primer

We are now ready to present pRHL, a relational program logic for probabilistic
computations. In its original form [2], implemented in the EasyCrypt proof
assistant [4], pRHL reasons about programs written in a imperative language
extended with random assignments with the following syntax of commands:

c ::= x← e | x $← d | if e then c else c | while e do c | skip | c; c

Sample
f ∈ T1

1−1−→ T2 ∀v ∈ T1. d1(v) = d2(f v)

� x1 $← d1 ∼ x2 $← d2 : ∀v, Φ[v/x1, f(v)/x2]⇒ Φ

If
Ψ ⇒ e1 = e2 � c1 ∼ c2 : Ψ ∧ e1 ⇒ Φ � c′1 ∼ c′2 : Ψ ∧ ¬e1 ⇒ Φ

� if e1 then c1 else c′1 ∼ if e2 then c2 else c′2 : Ψ ⇒ Φ

While
Φ⇒ e1 = e2 � c1 ∼ c2 : Φ ∧ e1 ⇒ Φ

� while e1 do c1 ∼ while e2 do c2 : Φ⇒ Φ ∧ ¬e1

Fig. 1: Two-sided proof rules (selection)

where e ranges over expressions, d ranges over distribution expressions, and
x $← d stores a sample from d into x. Commands are interpreted as functions from
memories to distributions over memories; using the fixed point theorem for Banach
spaces, one can define for each command c a function [[c]] : Mem→ Distr(Mem),
where Mem is the set of well-typed maps from program variables to values.

Assertions in the language are first-order formulae over generalized expressions.
The latter are built from tagged variables x1 and x2, which correspond to
the interpretation of the program variable x in the first and second memories.
Assertions in pRHL are deterministic and do not refer to probabilities.

Definition 3. A pRHL judgment is a quadruple of the form � c1 ∼ c2 : Ψ ⇒ Φ,
where Ψ and Φ are assertions, and c1 and c2 are separable statements, i.e. they
do not have any variable in common. A judgment is valid iff for every memories
m1 and m2, we have (m1,m2) |= Ψ ⇒ ([[c1]](m1), [[c2]](m2)) |= Φ† .

Judgments can be proved valid with a variety of rules.

Two-sided and one-sided rules. The pRHL logic features two-sided rules (Figure 1)
and one-sided rules (Figure 2); roughly speaking, two-sided rules relate two
commands with the same structure and control flow, while one-sided rules relate
two commands with possibly different structure or control flow; these rules allow
pRHL to express asynchronous couplings between programs that may exhibit
different control flow.

We point out two rules that will be especially important for our purposes.
The rule [Sample] is used for relating two sampling commands. Note that it
requires an injective function f : T1 → T2 from the domain of the first sampling
command to the domain of the second sampling command. When the two sampling
commands have the same domain—as will be the case in our examples—f is
simply a bijection on T = T1 = T2. This bijection gives us the freedom to specify
the relation between the two samples.

The rule [While] is the standard while rule adapted to pRHL. Note that we
require the guard of the two commands to be equal—so in particular the two
loops must make the same number of iterations—and Φ plays the role of the
while loop invariant as usual.

SampleL
� skip ∼ c : ∀v, Ψ [v/x1]⇒ Φ

� x1 $← d1 ∼ c : Ψ ⇒ Φ

IfL
� c1 ∼ c : Ψ ∧ e⇒ Φ � c′1 ∼ c : Ψ ∧ ¬e1 ⇒ Φ

� if e1 then c1 else c′1 ∼ c : Ψ ⇒ Φ

WhileL
� c1 ∼ c : Φ ∧ e1 ⇒ Φ while e1 do c1 lossless

� while e1 do c1 ∼ c : Φ⇒ Φ

Fig. 2: One-sided proof rules (selection)

Structural and program transformation rules. pRHL also features structural rules
that are very similar to those of Hoare logic, including the rule of consequence and
the case rule. In addition, it features a rule for program transformations, based
on an equivalence relation ' that provides a sound approximation of semantical
equivalence. For our examples, it is sufficient that the relation ' models loop
range splitting and biased coin splitting, as given by the following clauses:

while e do c ' while e ∧ e′ do c;while e do c
x $← Bern(p1 · p2) ' x1 $← Bern(p1);x2 $← Bern(p2);x← x1 ∧ x2

Figure 3 provides a selection of structural and program transformation rules.

Conseq
� c1 ∼ c2 : Ψ ′ ⇒ Φ′ Ψ ⇒ Ψ ′ Φ′ ⇒ Φ

� c1 ∼ c2 : Ψ ⇒ Φ

Case
� c1 ∼ c2 : Ψ ∧ Ψ ′ ⇒ Φ � c1 ∼ c2 : Ψ ∧ ¬ Ψ ′ ⇒ Φ

� c1 ∼ c2 : Ψ ⇒ Φ

Equiv
� c′1 ∼ c′2 : Ψ ⇒ Φ c1 ' c′1 c2 ' c′2

� c1 ∼ c2 : Ψ ⇒ Φ

Fig. 3: Structural and program transformation rules (selection)

2.2 From pRHL judgments to probability judgments

We will derive two kinds of program properties from the existence of an appropri-
ate probabilistic coupling. We will first discuss the mathematical theorems, where
the notation is lighter and the core idea more apparent, and then demonstrate
how the mathematical version can be expressed in terms of pRHL judgments.

Total variation and coupling. The first principle bounds the distance between
two distributions in terms of a probabilistic coupling. We first define the total
variation distance, also known as statistical distance, on distributions.

Definition 4. Let X and X ′ be distributions over a countable set A. The total
variation (TV) distance between X and X ′ is defined by
‖X −X ′‖tv , 1

2

∑
a∈A |X(a)−X ′(a)| .

To bound the distance between two distributions, it is enough to find a
coupling and bound the probability that the two coupled variables differ.

Theorem 1 (Total variation, see [7]). Let X and X ′ be distributions over a
countable set. Then for any coupling Y = (X̂, X̂ ′), we have

‖X −X ′‖tv ≤ Pr(x,x′)∼Y [x 6= x′].

This theorem is useful for reasoning about convergence of distributions.
We can find a pRHL analog of this theorem. We first introduce some useful

notation. For every expression e of type T and distribution µ over memories, let
[[e]]µ be defined as Mlet m = µ in unit m(e); note that [[e]]µ denotes a distribution
over T . Similarly, for every event E (modeled as a predicate over memories) and
distribution µ over memories, let [[E]]µ be defined as Mlet m = µ in unit E(m).
Thus, [[E]]µ is the probability of event E holding in the distribution µ.

Proposition 1. If � c1 ∼ c2 : Ψ ⇒ Φ⇒ v1 = v2, where Φ exclusively refers
to variables in c1, then for every initial memories m1 and m2 that satisfy the
precondition, the statistical distance between [[v1]][[c]](m1) and [[v2]][[c]](m2) is upper
bounded by ¬Φ in [[¬Φ]][[c]](m1), i.e. ‖[[v1]][[c1]](m1) − [[v2]][[c2]](m2)‖tv ≤ [[¬Φ]][[c]](m1) .

This proposition underlies the “up-to-bad” reasoning in EasyCrypt.

Stochastic domination and coupling. A second relational property of distributions
is stochastic domination.

Definition 5. Let X and X ′ be distributions over set A with an order relation
≥. We say X stochastically dominates X ′, written X ≥sd X ′, if for all a ∈ A,

Prx∼X [x ≥ a] ≥ Prx′∼X′ [x′ ≥ a].

Intuitively, stochastic domination defines a partial order on distributions over A
given an order over A. Strassen’s theorem shows that stochastic dominance is
intimately related to coupling.

Theorem 2 (Strassen’s theorem, see Lindvall [7]). Let X and X ′ be dis-
tributions over a countable ordered set A. Then X ≥sd X ′ if and only if there is
a coupling Y = (X̂, X̂ ′) with Y ∈ L≥(X,X

′).

We can express the “if” direction in the following pRHL form.

Proposition 2. If � c1 ∼ c2 : Ψ ⇒ v1 ≥ v2, then for every initial memories m1

and m2 that satisfy the precondition, [[v1]][[c]](m1) ≥sd [[v2]][[c]](m2).

3 Warming up: Random walks

We warm up with couplings for random walks. These numeric processes models
the evolution of a token over a discrete space: at each time step the token will
choose its next movement randomly. We will show that starting from any two
positions, the distributions of the two positions converges as we take more steps.

3.1 The basic random walk

Our first example is a random walk on the integers. Starting at an initial position,
at each step we flip a fair coin. If heads, we move one step to the right. Otherwise,
we move one step to the left. The code for running process k steps is presented in
the left side of Figure 4. The variable H stores the history of coin flips. While this
history isn’t needed for computation of the result (it is ghost code), this history
will be useful for stating invariants about the process.

pos← start; H← []; i← 0;
while i < k do

b $← {0,1};
H← b :: H;
if b then pos++ else pos-- fi;
i← i + 1;

end
return pos

(a) Random walk on Z

pos← start; H← []; i← 0;
while i < k do

mov $← {0,1};

dir $← {0,1};

crd $← [1,d];
H← (mov, dir, crd) :: H;
if mov then

pos← pos + (dir ? 1 : -1) * u(crd)
fi;
i ← i + 1;

end
return pos

(b) Random walk on (Z/kZ)d

Fig. 4: Two random walks

We consider two walks that start at locations start1 and start2, such that
start2 − start1 = 2n ≥ 0. We want to show that the distribution on end positions
in the two walks converges as k increases. From Theorem 1, it suffices to find a
coupling of the two walks, i.e., a way to coordinate their random samplings.

The basic idea is to mirror the two walks. When the first process moves
towards the second process, we have the second process also move closer; when
the first process moves away, we have the second process move away too. When
the two processes meet, we have the two processes make identical moves.

To carry out this plan, we define Σ(H) to be the number of true in H minus
the number of false; in terms of the random walk, Σ(H) measures the net change
in position of a process with history H. Then, we define a predicate such that
P (H) holds when H contains a prefix H’ with that Σ(H’) = n.

Accordingly, P (H1) holds when the first process has moved at least n spots
to the right. Under the coupling, this means that the second process must have

moved at least n spots to the left since the two particles are mirrored. Since the
first process starts out exactly 2n to the left of the second process, P (H1) is true
exactly when the coupled processes have already met.

To formalize this coupling in pRHL, we aim to couple two copies of the
program above, which we denote c1 and c2. We relate the two while loops with
rule [While] using the following invariant:

(pos1 6= pos2 ⇒ pos1 = i1 +Σ(H1) ∧ pos2 = i2 −Σ(H1)) ∧ (P (H1)⇒ pos1 = pos2).

The loop invariant states that before the two particles meet, their trajectories
are mirrored, and that once they have met, they coincide forever.

To prove that this is an invariant, we need to relate the loop bodies. The
key step is relating the two sampling operations using the rule [Sample]; note
that we must provide a bijection f from booleans to booleans. We choose the
bijection based on whether the two coupled walks have met or not.

More precisely, we perform a case analysis on pos1 = pos2 with rule [Case]. If
they are equal then the walks move together, so we use the identity map for f ;
this has the effect of forcing both processes to see the same sample. If the walks
are at different positions, we use the negation map (¬) for f , so as to force the
two processes to take opposite steps.

Putting everything together, we can prove the following judgment in pRHL:

� c1 ∼ c2 : start1 + 2n = start2 ⇒ (P (H1)⇒ pos1 = pos2).

By Theorem 1, we can bound the TV distance between the final positions. If two
memories m1,m2 satisfy m1(start) + 2n = m2(start), we have

‖[[pos1]][[c1]](m1) − [[pos2]][[c2]](m2)‖tv ≤ [[¬P (H1)]][[c1]](m1).

Note that the right hand side depends only on the first program. In other
words, proving this quantitative bound on two programs is reduced to proving a
quantitative property on a single program—this is the power of coupling.

3.2 Lazy random walk on a torus

For a more interesting example of a random walk, we can consider a walk on a
torus. Concretely, the position is now a d-tuple of integers in [0, k − 1]. The walk
first flips a fair coin; if heads it stays put, otherwise it moves. If it moves, the
walk chooses uniformly in [1, d] to choose the coordinate to move, and a second
fair coin to determine the direction (positive, or negative). The positions are
cyclic: increasing from k − 1 leads to 0, and decreasing from 0 leads to k − 1.

We can simulate this walk with the program in the right side of Figure 4,
where u(i) is the i-th canonical base vector in (Z/kZ)d. As before, we store the
trace of the random walk in the list H. All arithmetic is done modulo k.

Like the simple random walk, we start this process at two locations start1 and
start2 on the torus and run for k iterations. We aim to prove that the distributions
of the two walks converge as k increases by coupling the two walks, iteration by

iteration. Each iteration, we first choose the same coordinate crd and the same
direction dir in both walks. If the two positions coincide in coordinate crd, we
arrange both walks to select the same direction mov, so that the walks either move
together, or both stay put. If the two positions differ in crd, we arrange the walks
to select opposite samples in mov so that exactly one walk moves.

As in the basic random walk, we can view our coupling as letting the first
process evolve as usual, then coordinating the samples of the second process to
perform the coupling. In other words, given a history H1 of samples for the first
process, the behavior of the second coupled process is completely specified.

Thus, we can define operators to extract the movements of each walk from
the trace H1 of the samplings of the first process: Σ1(i, H1) is the drift of the ith
coordinate of the first process, and Σ2(i, H1) is the drift of the second process.
Essentially, these operators encode the coupling by describing how the second
process moves as a function of the first process’s samples.

In pRHL, we will use the rule [While] with the following invariant:

∀i ∈ [1, d]. (Σ1(i, H1)−Σ2(i, H1) = ∆[i]⇒ pos1[i] = pos2[i])

∧ (pos1[i] 6= pos2[i]⇒ pos1[i] = start1[i] +Σ1(i, H1) ∧ pos2[i] = start2[i] +Σ2(i, H1)),

where ∆ is the vector start2 − start1. The invariant describes the position of the
two coupled processes in terms of the history H1. We are particularly interested
in the first conjunct, which gives a condition for the two coupled processes to
meet in coordinate i.

To prove that the invariant is preserved, we encode the coupling described
above into pRHL, via three uses of the rule [Sample]. The first two samples—
for crd and dir—are coupled with f being identity bijections (on [1, d] and on
booleans), ensuring that the processes make identical choices. When sampling
mov, we inspect the history H1 to see whether the two walks agree in position crd.
If so, we choose the identity bijection for mov; if not, we choose negation. This
coupling is sufficient to verify the loop invariant.

To conclude our proof, the first conjunct in the invariant implies that we can
prove the pRHL judgment � c1 ∼ c2 : start2 − start1 = ∆⇒ Φ, where

Φ , (∀i ∈ [1, d]. Σ1(i, H1)−Σ2(i, H1) = ∆[i])⇒ ∀i ∈ [1, d]. pos1[i] = pos2[i].

Finally, Theorem 1 implies that for any two initial memories m1,m2 with
m2(start)−m1(start) = ∆, we have

‖[[pos1]][[c1]](m1)−[[pos2]][[c2]](m2)‖tv ≤ [[∃i ∈ [1, d]. Σ1(i, H1)−Σ2(i, H1) 6= ∆[i]]][[c1]](m1).

Again, proving a quantitative bound on the convergence of two distributions is
reduced to proving a quantitative bound on a single program.

4 Combining coupling with program transformation

So far, we have seen examples where the coupling is proved directly on the two
original programs c1 and c2. Often, it is convenient to introduce a third program
c∗ that is equivalent to c1, and then couple c∗ to c2. Applying transitivity (rule
[Equiv]), this gives a coupling between c1 and c2. Let’s consider two examples.

4.1 Two biased coins

Consider a coin flipping process that flips a coin k times, and returns the number
of heads observed. We consider this process run on two different biased coins:
The first coin has probability q1 of coming up heads, while the second coin has
probability q2 of coming up heads with q1 ≥ q2. Let the distribution on the
number of heads be µ1 and µ2 respectively.

Intuitively, it is clear that the first process is somehow bigger than the second
process: it is more likely to see more heads, since the first coin is biased with
a higher probability. Stochastic dominance turns out to be the proper way to
formalize our intuition. To prove it, Proposition 2 implies that we just need to
find an appropriate coupling of the two processes.

While it is possible to define a coupling directly by carefully coordinating
the corresponding coin flips, we will give a simpler coupling that proceeds in
two stages. First, we will couple a program c1 computing µ1 to an intermediate
program c∗. Then, we will show that c∗ is equivalent to a program c2 computing
µ2, thus exhibiting a coupling between µ1 and µ2. Letting r = q2/q1 and denoting
the coin flip distribution with probability p of sampling true by Bern(p), we give
the programs in Figure 5.

For the first step, we want to couple c1 and c∗. For a rough sketch, we want to
use rule [While] with an appropriate loop invariant; here, n1 ≥ n∗. To show that
the invariant is preserved, we need to relate the loop bodies. We use the two-sided
rule [Sample] when sampling x and y (taking the bijection f to be the identity),
the one-sided rule [Sample-L] to relate sampling nothing (skip) in c1 with
sampling z in c∗, and the one-sided rule [IfL] to relate the two conditionals. (The
one-sided rule is needed, since the two conditionals may take different branches.)
Thus, we can prove the judgment � c1 ∼ c∗ : q1 ≥ q2 ∧ r = q2/q1 ⇒ n1 ≥ n∗.

For the second step, we need to prove that c∗ is equivalent to c2. Here, we use
a sound approximation ' to semantic equivalence as described in the introduction.
Specifically, we have x $← Bern(q1 · r) ' y $← Bern(q1); r $← Bern(r); x← y ∧ z

for the loop bodies; showing equivalence of c∗ and c2 is then straightforward.
Thus, we can show � c∗ ∼ c2 : q1 ≥ q2 ∧ r = q2/q1 ⇒ n∗ = n2. Applying rule
[Equiv] gives the final judgment � c1 ∼ c2 : q1 ≥ q2 ∧ r = q2/q1 ⇒ n1 ≥ n2,
showing stochastic domination by Proposition 2.

4.2 Balls into bins: asynchronous coupling

The examples we have seen so far are all synchronous couplings: they relate the
iterations of the while loop in lock-step. For some applications, we may want to
reason asynchronously, perhaps allowing one side to progress while holding the
other side fixed. One example of an asynchronous coupling is analyzing the balls
into bins process. We have two bins, and a set of n balls. At each step, we throw
a ball into a random bin, returning the count of both bins when we have thrown
all the balls. The code is on the left side in Figure 6.

Now, we would like to consider what happens when we run two processes with
different numbers of balls. Intuitively, it is clear that if the first process throws

n← 0; i← 0;
whil i < k do:

x $← Bern(q1);

if x then
n← n + 1;

fi
i← i + 1;

end
return n

(a) Program c1

n← 0; i← 0;
while i < k do:

y $← Bern(q1);

z $← Bern(r);

x $← y ∧ z;
if x then
n← n + 1;

fi;
i← i + 1;

end
return n

(b) Program c∗

n← 0; i← 0;
while i < k do:

x $← Bern(q2);

if x then
n← n + 1

fi;
i← i + 1

end
return n

(c) Program c2

Fig. 5: Coupling for biased coin flips

i, binA, binB← 0;
while i < n do
i← i + 1;

b $← {0,1};
if b then binA++ else binB++ fi

end

return (binA, binB)

(a) Original programs c1, c2

i, binA, binB← 0;
while i < n ∧ i < m do

b $← {0,1};
if b then binA++ else binB++ fi;
i← i + 1;

end
while i < n do

b $← {0,1};
if b then binA++ else binB++ fi;
i← i + 1;

end
return (binA, binB)

(b) Intermediate program c∗

Fig. 6: Coupling balls into bins

more balls than the second process, it should result in a higher load in the bins;
we aim to prove that the first process stochastically dominates the second with
the following coupling. Assume that the first process has more balls (n1 ≥ n2).
For the first n2 balls, we have the two process do the same thing—they choose
the same bucket for their tosses. For the last n1 − n2 steps, the first process
throws the rest of the balls. Evidently, this coupling forces the bins in the first
run to have higher load than the bins in the second run.

To formalize this example, we again introduce a program c∗, proving equiv-
alence with c1 and showing a coupling with c2. The code for c∗ is on the right
side in Figure 6; we require the dummy input m to be equal to n2.

Proving equivalence with program c1 is direct, using the loop range splitting
transformation in EasyCrypt: while e do c ' while e ∧ e′ do c;while e do c. Once
this is done, we simply need to provide a coupling between c∗ and c2. By our
choice of m, we can trivially couple the first loop in c∗ to the (single) loop in c2,
ensuring that Φ , binA∗ ≥ binA2 ∧ binB∗ ≥ binB2 after the first loop.

Then, we can apply the one-sided rules to couple the second loop in c∗ with
a skip statement in c2. It is straightforward to show that Φ is an invariant in

rule [WhileL], from which we can conclude � c∗ ∼ c2 : n1 ≥ n2 ∧m = n2 ⇒
binA∗ ≥ binA2 ∧ binB∗ ≥ binB2, and by equivalence of c1 and c∗ we have � c1 ∼
c2 : n1 ≥ n2 ⇒ binA1 ≥ binA2 ∧ binB1 ≥ binB2, enough for stochastic domination by
Proposition 2.

5 Non-deterministic couplings: birth and death

So far, we have seen deterministic couplings, which reuse randomness from the
coupled processes in the coupling; this can be seen in the [Sample] rule, when
we always choose a deterministic. In this section, we will see a more sophisticated
coupling that injects new randomness.

For our example, we consider a classic Markov process. Roughly speaking, a
Markov process moves within a set of states each transition depending only on
the current state and a fresh random sample. The random walks we saw before
are classic examples of Markov processes.

A more complex Markov process is the birth and death chain. The state space
is Z, and the process starts at some integer x. At every time step, if the process
is at state i, the process has some probability bi of increasing by one, and some
probability ai of decreasing by one. Note that ai and bi may add up to less than
1: there can be some positive probability 1− ai− bi where the process stays fixed.

To model this process, we define a sum type Move with three elements (Left,
Right and Still) which correspond to the possible moves a process can make.
Then, the chains are modeled by the code in the left of Figure 7, where the
distribution bd(state) is the distribution of moves from state.

H← []; state← start; i← 0;
while i < k do

dir $← bd(state);

if dir = Left then
state← state - 1;

else if dir = Right then
state← state + 1;

fi
H← state :: H;
i← i + 1;

end
return state

(a) Original programs c1, c2

H← []; state← start; i← 0;
while i < steps do

d $← dcouple;
dir← proj [1|2] d;
if dir = Left then

state← state - 1;
else if dir = Right then
state← state + 1;

fi
H← state :: H;
i← i + 1;

end
return state

(b) Intermediate programs c∗1, c∗2

Fig. 7: Coupling the birth and death chain

Just like the biased coin and balls into bins processes, we want to prove
stochastic domination for two processes started at states start1 ≥ start2 via
coupling. The difficulty is that if the processes become adjacent and they both
move, the two processes may swap positions, losing stochastic domination.

The solution is to use a special coupling when the two processes are on
two adjacent states as in Mufa [8]. Unlike the previous examples, the coupling
is not deterministic: the behavior of one process is not fully determined by
the randomness of the other. Our loop invariant is the usual one for stochastic
domination: state1 ≥ state2. To show that this invariant is preserved, we perform a
case analysis on whether state1 = state2, state1 = state2+1 or state1 > state2+1.

We focus on interesting case: the middle one, when the states are adjacent.
Here, we perform a trick: we switch c1, c2 for two equivalent intermediate pro-
grams c∗1, c∗2, and prove a coupling on the two intermediate programs. The two
intermediate programs each sample from dcouple, a distribution on pairs of moves,
and project out the first or second component as dir; in other words, we explicitly
code c∗1, c∗2 as sampling from the two marginals of a common distribution dcouple.
By proving that the marginals are indeed distributed as bd(state1) and bd(state2),
we can prove equivalences c1 ' c∗1 and c2 ' c∗2. The code is in the right side of
Figure 7, where proj [1|2] is the first pair projection π1 in c1, and the second
pair projection π2 in c2.

All that remains is to prove a coupling between c∗1 and c∗2 satisfying the loop
invariant state1 ≥ state2. With adjacent states, dcouple is given by the following
function from pairs of moves to probabilities:

op distr-adjacent ai ai+1 bi bi+1 (x : Move * Move) =
if x = (Right, Left) then min(bi+1 , ai) else

if x = (Still, Left) then (bi+1 − ai)
+ else

if x = (Right, Still) then (ai − bi+1)
+ else

if x = (Still, Right) then ai+1 else
if x = (Left , Still) then bi else
if x = (Still, Still) then
1 - min(bi+1 , ai) - ai+1 - bi - |bi+1 − ai | else

if x = (_ , _) then 0.

Note that the case (Left, Right) has probability 0: this forbids the first process
from skipping past the second process.

Now the coupling is easy: we simply require both samples from dcouple to be
the same. Since state1 = state2+1 and the distribution never returns (Left, Right),
the loop invariant is trivially preserved. This shows the desired coupling, and
stochastic domination by Proposition 2.

6 Conclusion and future work

We have established the connection between relational verification of probabilistic
programs using pRHL, and coupling, which plays a major role in probability
theory. Furthermore, we have used the connection by verifying in pRHL several
well-known examples of couplings from the literature on randomized algorithms.

More broadly, our work occupies a middle ground between the two main
approaches to relational verification: (i) encoding the two programs as a single
program and reasoning about the single program (techniques include include
cross-products [12], self-composition [1], and product programs [3]); and (ii)
using a program logic to reason directly about two programs (techniques include
relational Hoare logic [5], relational separation logic [11], and pRHL [2]).

Our work also suggests the possibility of a practical proof technique for
verifying probability results based on coupling, but a deeper understanding of
the links between pRHL and coupling (and their variants thereof), and a more
general framework for verification of probabilistic programs will be required.

A more general verification framework. pRHL derivations implicitly construct a se-
quence of couplings between the executions—modeled as sequences of distributions—
of the two programs involved in the final statement. The single most important
step in the construction of the coupling is performed when applying the rule
[Sample] for random sampling, and more specifically when picking the bijection
function f . A careful look at the rule reveals that the coupling is a deterministic
coupling, as defined by Villani [10]:

Definition 6. A coupling (X,Y) between two spaces X ,Y is said to be deter-
ministic if there exists a function T : X → Y such that Y = T (X).

Indeed, deterministic couplings are often sufficient in cryptographic proofs—the
original motivation to develop pRHL. However, there are many examples of
couplings that cannot be verified using deterministic couplings. For our examples
we have worked around the difficulty by using program transformation rules.
However, this approach is very specific, and does not generalize. Thus, an in-
teresting generalization of pRHL would be to relax the requirement that the
relationship between the two samplings is given by a 1-1 map, by allowing a
binary relation which satisfies suitable conditions. Such a general rule could
enable a more general class of couplings, and yield more principled proofs of
some of the couplings studied in this paper.

Moreover, it would be interesting to extend EasyCrypt with mechanisms for
handling the non-relational reasoning in couplings. To prove quantitative bounds
on total variation in the random walk example, we need to bound the time it
takes for a single random walk to reach a certain position. Obtaining precise
bounds on the speed of convergence requires more complex reasoning, and will
require an expressive program logic. Such a program logic is under development,
but has not yet been integrated in EasyCrypt.

Extending to shift and path coupling. The couplings realized in the random walks
are instances of exact couplings, i.e. the paths will eventually merge. A more
general notion of coupling for such processes is the shift-coupling, where the
merging condition is “relaxed” in the sense that the paths will merge modulo a
random time shift. The general theory of path couplings provides similar-shaped
inequalities as the ones in exact coupling, allowing powerful mathematical-based
reasoning inside the logic with the [Conseq] rule. These coupling notions are
complex, and it is not yet clear how they can be verified.

Other examples. The coupling literature is rich with further examples, from
simple to challenging. We intend to verify many other examples of couplings, in
particular the proof of Dynkin’s card trick, and the proof of the constructive
Lovasz Local Lemma, a fundamental tool used in the probabilistic method.

Bibliography

[1] G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In R. Foccardi, editor, Computer Security Foundations,
CSF’04, pages 100–114. IEEE Press, 2004.

[2] G. Barthe, B. Grégoire, and S. Zanella Béguelin. Formal certification of
code-based cryptographic proofs. In Z. Shao and B. C. Pierce, editors,
Principles of Programming Languages, POPL’09, pages 90–101. ACM Press,
2009.

[3] G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In Formal Methods, Lecture Notes in Computer Science. Springer,
2011.

[4] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided
security proofs for the working cryptographer. In Advances in Cryptology —
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
71–90. Springer, 2011.

[5] N. Benton. Simple relational correctness proofs for static analyses and
program transformations. In N. D. Jones and X. Leroy, editors, Principles
of Programming Languages, POPL’04, pages 14–25. ACM Press, 2004.

[6] Y. Deng and W. Du. Logical, metric, and algorithmic characterisations
of probabilistic bisimulation. Technical Report CMU-CS-11-110, Carnegie
Mellon University, March 2011.

[7] T. Lindvall. Lectures on the coupling method. Courier Corporation, 2002.
[8] C. Mufa. Optimal markovian couplings and applications. Acta Mathematica

Sinica, 10(3):260–275, 1994.
[9] H. Thorisson. Coupling, Stationarity, and Regeneration. Springer, 2000.
[10] C. Villani. Optimal transport: old and new. Springer Science, 2008.
[11] H. Yang. Relational separation logic. Theoretical Comput. Sci., 375(1-3):

308–334, 2007.
[12] A. Zaks and A. Pnueli. Covac: Compiler validation by program analysis of

the cross-product. In Formal Methods, pages 35–51, 2008.

A Graphical depictions of random processes

We depict the two random walk processes in Figures 8 and 9.

1/2

1/2

Fig. 8: Unbiased random walk

1/81/8

1/8

1/8

Fig. 9: Lazy random walk on a two dimensional torus

	Relational reasoning via probabilistic coupling

