
1

Loop-Abort Faults on Lattice-Based Signature
Schemes and Key Exchange Protocols

Thomas Espitau, Pierre-Alain Fouque, Benoı̂t Gérard, and Mehdi Tibouchi

F

Abstract—Although postquantum cryptography is of growing practical
concern, not many works have been devoted to implementation security
issues related to postquantum schemes.

In this paper, we look in particular at fault attacks against imple-
mentations of lattice-based signatures and key exchange protocols.
For signature schemes, we are interested both in Fiat–Shamir type
constructions (particularly BLISS, but also GLP, PASSSign, and Ring-
TESLA) and in hash-and-sign schemes (particularly the GPV-based
scheme of Ducas–Prest–Lyubashevsky). For key exchange protocols,
we study the implementations of NewHope, Frodo, and Kyber. These
schemes form a representative sample of modern, practical lattice-
based signatures and key exchange protocols, and achieve a high level
of efficiency in both software and hardware. We present several fault
attacks against those schemes that recover the entire key recovery with
only a few faulty executions (sometimes only one), show that those
attacks can be mounted in practice based on concrete experiments in
hardware, and discuss possible countermeasures against them.

Keywords: Fault Attacks, Digital Signatures, Postquantum Cryptogra-
phy, Lattices.

1 INTRODUCTION

1.1 Lattice-based cryptography
Recent progress in quantum computation [17], the NSA
advisory memorandum recommending the transition away
from Suite B and to postquantum cryptography [51], as well
as the announcement of the NIST standardization process
for postquantum cryptography [14] all suggest that research
on postquantum schemes, which is already plentiful but
mostly focused on theoretical constructions and asymptotic
security, should increasingly take into account real-world
implementation issues.

Among all flavors of postquantum cryptography, lattice-
based schemes occupy a position of particular interest, as
they rely on well-studied problems and come with uniquely
strong security guarantees, such as worst-case to average-
case reductions [58]. A number of works have also focused

• T. Espitau is a PhD student at Sorbonne Universités, UPMC, LIP6.
E-mail: thomas.espitau@lip6.fr

• P.-A. Fouque is a Full Professor at Univ Rennes and at Institut Universi-
taire de France & IRISA.
E-mail: pierre-alain.fouque@univ-rennes1.fr

• B. Gérard is with DGA.MI and is an Associate Researcher at IRISA.
E-mail: benoit.gerard@irisa.fr

• M. Tibouchi is a Distinguished Researcher at NTT Secure Platform
Laboratories.
E-mail: tibouchi.mehdi@lab.ntt.co.jp

Manuscript received May 15, 2017.

on improving the performance of lattice-based cryptogra-
phy, and actual implementation results suggest that prop-
erly optimized schemes may be competitive with, or even
outperform, classical factoring and discrete logarithm-based
constructions1.

The literature on the underlying number-theoretic prob-
lems of lattice-based cryptography is extensive (even
though concrete bit security is not nearly as well understood
as for factoring and discrete logarithms). On the other hand,
there is currently a distinct lack of cryptanalytic results
on the physical security of implementations of lattice-based
schemes (or in fact, postquantum schemes in general! [66]).
It is well-known that physical attacks, particularly against
public-key schemes, are often simpler, easier to mount
and more devastating than attacks targeting underlying
hardness assumptions: it is often the case that a few bits
of leakage or a few fault injections can reveal an entire
secret key (the well-known attacks from [7], [9] are typical
examples). We therefore deem it important to investigate
how fault attacks may be leveraged to recover secret keys
in the lattice-based setting, particularly against signature
schemes and key exchange protocols, as those primitives are
probably the most likely to be deployed in a setting where
fault attacks are relevant, and they have also received the
most attention in terms of efficient implementations both in
hardware and software.

1.2 Implementations of lattice-based signatures

Efficient signature schemes have been typically proved
secure in the random oracle model, and can be roughly
divided in two families: the hash-and-sign family (which
includes schemes like FDH and PSS), as well as signa-
tures based on identification schemes, using the Fiat–Shamir
heuristic or a variant thereof. Efficient lattice-based signa-
tures can also be divided along those lines, as observed
for example in the survey of practical lattice-based digital
signature schemes presented by O’Neill and Güneysu at the
NIST workshop on postquantum cryptography [40].

The Fiat–Shamir family is the most developed, with a
number of schemes coming with concrete implementations
in software, and occasionally in hardware as well. Most

1. Usually, those efficient instantiations do not have parameters
achieving high security under known reductions to worst-case prob-
lems, but the existence of those reductions is usually seen as a good
sign that the security assumptions themselves are sound.

schemes in that family follow Lyubashevsky’s “Fiat–Shamir
with aborts” paradigm [42], which uses rejection sam-
pling to ensure that the underlying identification scheme
achieves honest-verifier zero-knowledge. Among lattice-
based schemes, the exemplar in that family is Lyuba-
shevsky’s scheme from EUROCRYPT 2012 [43]. It is, how-
ever, of limited efficiency, and had to be optimized to
yield practical implementations. This was first carried out
by Güneysu et al., who described an optimized hardware
implementation of it at CHES 2012 [37], and then to a larger
extent by Ducas et al. in their scheme BLISS [20], which in-
cludes a number of theoretical improvements and is the top-
performing lattice-based signature. It was also implemented
in hardware by Pöppelmann et al. [62]. Other schemes in
that family include Hoffstein et al.’s PASSSign [39], which
incorporates ideas from NTRU, and Akleylek et al.’s Ring-
TESLA [1], which boasts a tight security reduction.

On the hash-and-sign side, there were a number of early
proposals with heuristic security (and no actual security
proofs), particularly GGH [35] and NTRUSign [38], but
despite several attempts to patch them2 they turned out to
be insecure. A principled, provable approach to designing
lattice-based hash-and-sign signatures was first described
by Gentry, Peikert, and Vaikuntanathan in [33], based on dis-
crete Gaussian sampling over lattices. The resulting scheme,
GPV, is rather inefficient, even when using faster tech-
niques for lattice Gaussian sampling [49]. However, Ducas,
Lyubashevsky and Prest [23] later showed how it could be
optimized and instantiated over NTRU lattices to achieve a
relatively efficient scheme with particularly short signature
size. The DLP scheme is somewhat slower than BLISS in
software, but still a good contender for practical lattice-
based signatures, and seemingly the only one in the hash-
and-sign family.

1.3 Implementations of lattice-based key exchange

In the last few years, very efficient lattice-based key ex-
change protocols have been proposed at several security
conferences [3], [10], [11], [57] and some of them have
been field tested by Microsoft and Google as alternatives
to the prequantum key agreements in the TLS handshake
protocol. This has shown that lattice-based key exchange
protocols can be practical in many contexts and offer credi-
ble alternatives to schemes like ECDH, incurring only a 50%
performance penalty or so compared to elliptic curves.

The various lattice-based key exchange protocols have a
similar structure, relying on Peikert’s reconciliation mech-
anism [57] that allows the two parties to recover the exact
same secret even if they both have a noisy version of the
common secret. They mostly differ on the underlying lattice
assumptions they are based on. Similarly to the signature
setting, one can in particular distinguish between ring-
based constructions, like NewHope [3], and constructions
using standard lattices, like Frodo [10]. The recent scheme
Kyber [12], relying on so-called module lattices, is in some
sense a middle ground between those two approaches.

2. There is a provably secure scheme due to Aguilar et al. [48]
that claims to “seal the leak on NTRUSign”, but it actually turns the
construction into a Fiat–Shamir type scheme, using rejection sampling
à la Lyubashevsky.

1.4 Our contributions

In this paper, we initiate the study of fault attacks against
lattice-based signatures and key exchange protocols, and
obtain attacks against all the practical schemes mentioned
above.

As noted previously, early lattice-based signature
schemes with heuristic security have been broken using
standard attacks [32], [34], [52] but recent constructions
including [20], [23], [33], [42], [43] are provably secure,
and cryptanalysis therefore requires a more powerful attack
model. In this work we consider fault attacks.

We present two attacks on signatures, both using a sim-
ilar type of faults which allows the attacker to cause a loop
inside the signature generation algorithm to abort early. Suc-
cessful loop-abort faults have been described many times in
the literature, including against DSA [50] and pairing com-
putations [55], and in our attacks they can be used to recover
information about the private signing key. The underlying
mathematical techniques used to actually recover the key,
however, are quite different in the two attacks.

Our first attack applies to the schemes in the Fiat–
Shamir family: we describe it against BLISS [20], [62], and
show how it extends to GLP [37], PASSSign [39] and Ring-
TESLA [1]. In that attack, we inject a fault in the loop that
generates the random “commitment value” y of the sigma
protocol associated with the Fiat–Shamir signature scheme.
That commitment value is a random polynomial generated
coefficient by coefficient and an early loop abort causes it
to have abnormally low degree, so that the protocol is no
longer zero-knowledge. In fact, this will usually leak enough
information that a single faulty signature is enough to recover
the entire signing key. More specifically, we show that the
faulty signature can be used to construct a point that is very
close to a vector in a suitable integer lattice of moderate
dimension, and such that the difference is essentially (a
subset of) the signing key, which can thus be recovered
using lattice reduction.

Our second attack targets the GPV-based hash-and-sign
signature scheme of Ducas et al. [23]. In that case, we con-
sider early loop abort faults against the discrete Gaussian
sampling in the secret trapdoor lattice used in signature
generation. The early loop abort causes the signature to be a
linear combination of the last few rows of the secret lattice.
A few faulty signatures can then be used to recover the span
of those rows and using the special structure of the lattice,
we can then use lattice reduction to find one of the rows up
to sign, which is enough to completely reconstruct the secret
key. In practice, if we can cause loop aborts after up to m
iterations, we find that m+ 2 faulty signatures are enough for
full key recovery with high probability.

In addition, we also describe loop-abort fault attacks on
three protocols that represent the state of the art for lattice-
based key exchange, namely NewHope [3], Frodo [10] and
Kyber [12]. Although those schemes have a completely
different overall structure than the signature schemes men-
tioned above, they also involve the sampling of random
Gaussian secrets coefficient by coefficient during each ex-
ecution of the protocol. Injecting a fault that causes this
random sampling loop to abort early causes abnormally
“low-dimensional” secrets to be generated, and this yields

2

a key recovery attack very similar to the one we mount on
BLISS and other Fiat–Shamir signatures.

All of our attacks are supported by extensive mathe-
matical simulations in Sage [65]. We also take a close look
at the concrete software and hardware implementations of
the schemes above, and discuss the concrete feasibility of
injecting the required loop-abort faults in practice. We find
the attacks to be highly realistic. Moreover, we demonstrate
the practicality of those attacks (taking NewHope as an
example) in two ways against two types of platforms:

• first, we successfully carry out a simulation of our
fault attack against the emulated execution of ac-
tual compiled code for the 32-bit SPARC processor
LEON3, using a readily available fault simulation
tool for that architecture;

• second, we concretely carry out those faults with
clock glitches against an 8-bit AVR XMEGA micro-
controller, using the power analysis and fault attack
testing board ChipWhisperer-Lite [53].

Finally, we discuss several possible countermeasures to pro-
tect against our attacks.

1.5 Related work
To the best of our knowledge, the first previous work on
fault attacks against lattice-based signatures, and in par-
ticular the only one mentioned in the survey of Taha and
Eisenbarth [66], is the fault analysis work of Kamal and
Youssef on NTRUSign [41]. It is, however, of limited interest
since NTRUSign is known to be broken [24], [52]; it also
suffers from a very low probability of success.

In 2016, concurrently with our work, Bindel, Buchmann
and Krämer [8] described various fault attacks against Fiat–
Shamir type signature schemes. Most of the attacks, how-
ever, are either in a relatively contrived model (targeting key
generation), or require unrealistically many faults and are
arguably straightforward (bypassing rejection sampling in
signature generation or size/correctness checks in signature
verification). One attack described in the paper can be seen
as posing a serious threat, namely the one in [8, §IV-B], but
it amounts to a weaker variant of our Fiat–Shamir attack,
using simple linear algebra rather than lattice reduction.
As a result, it requires several hundred faulty signatures,
whereas our attack needs only one.

Another interesting concurrent work is the recent cache
attack against BLISS of Groot Bruinderink et al. [36]. It uses
cache side-channels to extract information about the coef-
ficients of the commitment polynomial y, and then lattice
reduction to recover the signing key based on that side-
channel information. In that sense, it is similar to our Fiat–
Shamir attack. However, since the nature of the information
is quite different than in our setting, the mathematical
techniques are also quite different. In particular, again, in
contrast with our fault attack, that cache attack requires
many signatures for a successful key recovery. Further side-
channel attacks on BLISS, including the works of Pessl et
al. [60] and Espitau et al. [26], have similar limitations.

A preliminary version of this paper has been published
at SAC 2016 in [25]. We extend this version by attacking a
larger number of signature schemes (GLP, PASSSign, Ring-
TESLA), and generalizing our original attacks to the key

exchange settings (against NewHope, Frodo and Kyber).
Our discussion of the practical implementations of the faults
we consider has also been revised and improved; in par-
ticular, the fault simulation on LEON3 compiled code is
a novel contribution, as is the practical attack on the AVR
microcontroller.

1.6 Applicability to NIST-submitted variants of the tar-
get schemes
Many of the schemes we consider in this paper have been
submitted to the NIST postquantum standardization ef-
fort [14] in a slightly modified form.

In particular, the NIST-submitted versions of NewHope,
Frodo and Kyber are presented as key encapsulation mech-
anisms (KEMs) instead of key-exchange protocols in the
usual sense. Key exchange then corresponds to key genera-
tion for one party and key encapsulation for the other. That
modification of the overall structure of the schemes does not
significantly affect the actual operations carried out as part
of those schemes, and in particular our attacks apply to the
KEM versions with essentially no change.

Regarding signatures, none of the schemes discussed
in this paper (BLISS, Lyubashevsky’s scheme, Ring-TESLA,
PASSSign and the DLP scheme of Ducas, Lyubashevsky and
Prest) have been submitted to the NIST effort. However,
NIST candidate qTESLA [2] is a slight variant of Ring-
TESLA, and our attack extends in a straightforward way.
One should simply pay attention to the fact that the random-
ness y is generated as a deterministic function of the mes-
sage; since that deterministic function involves sampling
each coefficient of y one by one, loop-abort faults apply
similarly. On a related note, NIST candidate Dilithium [22]
can be seen as a modified version of BLISS, using module
lattices instead of ideal lattices (and, again, a deterministic
generation for y). As a result, just as what happens for Frodo
and Kyber, our attack may extend or not depending on the
direction in which the matrix of coefficients is filled as part
of the generation of y.

PASSSign does not appear to have a counterpart sub-
mitted to NIST, and Lyubashevsky’s scheme is conceptually
related to most submissions, but the low-level behavior is
usual different. On the hash-and-sign side, the closest NIST
candidate to DLP is Falcon [30]. However, although the
main idea of constructing a hash-and-sign signature using
Gaussian sampling on an NTRU lattice is the same, Falcon
uses a tree-shaped recursive algorithm for lattice sampling
instead of a linear loop. Due to this modified structure, our
attack does not apply directly to that scheme.

2 DESCRIPTION OF THE LATTICE-BASED SIGNA-
TURE AND KEY EXCHANGE SCHEMES

2.1 Notation
For any integer q, we identify the elements of the ring Zq
with the integers in [−q/2, q/2). Vectors are considered as
column vectors and are written in bold lower case letters;
matrices are denoted by upper case letters. We use both the
`2 Euclidean norm of vectors, ‖v‖2 = (

∑
i v

2
i)1/2, and their

`∞-norm, ‖v‖∞ = maxi |vi|. In ring-based schemes, ring
elements (which can be seen as polynomials) are identified

3

with their vectors of coefficients, and hence also denoted by
bold lower case letters.

The Gaussian distribution with standard deviation σ ∈
R and center c ∈ R at x ∈ R, is defined by ρc,σ(x) =

exp
(−(x−c)2

2σ2

)
and more generally in higher dimension by

ρc,σ(x) = exp
(−(x−c)2

2σ2

)
and when c = 0, by ρσ(x).

The discrete Gaussian distribution over Z centered at 0
is defined by Dσ(x) = ρσ(x)/ρσ(Z) (or DZ,σ) and more
generally over Zm by Dm

σ (x) = ρσ(x)/ρσ(Zm), where
ρσ(Zm) =

∑
x∈Zm ρσ(x).

2.2 Description of BLISS

The BLISS signature scheme [20] is possibly the most ef-
ficient lattice-based signature scheme so far. It has been
implemented in both software [21] and hardware [62], and
boasts performance numbers comparable to classical fac-
toring and discrete-logarithm based schemes. BLISS can
be seen as a ring-based optimization of the earlier lattice-
based scheme of Lyubashevsky [43], sharing the same “Fiat–
Shamir with aborts” structure [42]. One can give a simplified
description of the scheme as follows: the public key is an
NTRU-like ratio of the form aq = s2/s1 mod q, where the
signing key polynomials s1, s2 ∈ R = Z[x]/(xn + 1) are
small and sparse. To sign a message µ, one first generates
commitment values y1,y2 ∈ R with normally distributed
coefficients, and then computes a hash c of the message
µ together with u = −aqy1 + y2 mod q. The signature is
then the triple (c, z1, z2), with zi = yi + sic, and there
is rejection sampling to ensure that the distribution of zi
is independent of the secret key. Verification is possible
because u = −aqz1 + z2 mod q. The real BLISS scheme,
described in full in Figure 1, includes several optimizations
on top of the above description. In particular, to improve the
repetition rate, it targets a bimodal Gaussian distribution for
the zi’s, so there is a random sign flip in their definition.
In addition, to reduce key size, the signature element z2

is actually transmitted in compressed form z†2, and accord-
ingly, the hash input includes only a compressed version of
u. These various optimizations are essentially irrelevant for
our purposes.

2.3 Description of the GPV-based scheme of [23]

The second signature scheme we consider is the one pro-
posed by Ducas, Lyubashevsky and Prest at ASIACRYPT
2014 [23]. It is an optimization using NTRU lattices of the
GPV hash-and-sign signature scheme of Gentry, Peikert and
Vaikuntanathan [33], and has been implemented in software
by Prest [63]. As in GPV, the signing key is a “good” basis
of a certain lattice L (with short, almost orthogonal vectors),
and the public key is a “bad” basis of the same lattice (with
longer vectors and a large orthogonality defect). To sign a
message µ, one simply hashes it to obtain a vector c in the
ambient space ofL, and uses the good, secret basis to sample
v ∈ L according to a discrete Gaussian distribution of small
variance supported on L and centered at c. That vector v
is the signature; it is, in particular, a lattice point very close
to c. That property can be checked using the bad, public
basis, but that basis is too large to sample such close vectors
(this, combined with the fact that the discrete Gaussian

leaks no information about the secret basis is what makes
it possible to prove security). The actual scheme of Ducas–
Lyubashevsky–Prest, described in Figure 2, uses a lattice of
the same form as NTRU: L = {(y, z) ∈ R2 | y + z · h = 0},
where the public key h is again a ratio g/f mod q of small,
sparse polynomials in R = Z[x]/(xn + 1). The use of such
a lattice yields a very compact representation of the keys
and makes it possible to compress the signature as well
by publishing only the second component of the sampled
vector v. As a result, this hash-and-sign scheme is very
space efficient (even more than BLISS). However, the use
of lattice Gaussian sampling makes signature generation
significantly slower than BLISS at similar security levels.

2.4 Description of NewHope
The NewHope [3] key exchange protocol is one of the
highest-profile key exchange protocols from lattices, and
has been awarded the 2016 Internet Defense Prize at the
USENIX Security conference. It is based on the so-called
Peikert tweak and can be seen as a variant of the scheme of
Ding et al. [18]. NewHope improves upon earlier schemes
in various ways. On the one hand the authors proposed
a refined analysis of the failure probability of the key
exchange and its resistance towards quantum adversaries.
On the other hand, various tweaks were introduced in the
design of the scheme: like Peikert, the authors use the KEM
framework, defined by the algorithms (Setup, Gen, Encaps,
Decaps); after a successful protocol run both parties share
an ephemeral secret key that can be used to protect further
communication: the reconciliation allows both parties to
derive the session key from an approximately matching
pseudorandom ring element. On Alice’s side, this element
can be written as u · s = a · s′ · s + e′ · s and on Bob’s side:
v = b · s′ + e′′ = a · s · s′ + e · s′ + e′′, where s, s′ are
the respective secrets of Alice and Bob, taken as element in
the convolution ring R. The full outline of the NewHope
protocol is given in Figure 3.

2.5 Description of Frodo
The second key exchange scheme we consider has been
introduced by Bos et al. at CCS 2016 [10]. This scheme
is a practical demonstration of an efficient lattice scheme
based on the hardness of LWE (in contrast with NewHope,
which relies on the hardness of the Ring-LWE problem). Its
performance has been evaluated in a “real-world” setting by
benchmarking its implementation within the TLS protocol,
when coupled with ECDSA certificates. As in NewHope
key exchange, the reconciliation elements can be written
as B′ · S = S′ · A · S + E′ · S and V = S′ · B + E′′ =
S′ ·A ·S+S′ ·E+E′′ for Alice and Bob, but in contrast with
NewHope, the secrets are no longer elements of a ring, but
vectors of integers. The full outline of the Frodo protocol is
given in Figure 4.

3 ATTACK ON FIAT–SHAMIR TYPE LATTICE-BASED
SIGNATURES

The first fault attack that we consider targets the lattice-
based signature schemes of Fiat–Shamir type, and specifi-
cally the generation of the random “commitment” element

4

1: function KEYGEN()
2: sample f ,g ∈ R = Z[x]/(xn + 1), uniformly with dδ1ne

coefficients in {±1}, dδ2ne coefficients in {±2} and other
equal to zero

3: S = (s1, s2)T ← (f , 2g + 1)T

4: if Nκ(S) ≥ C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then restart
5: aq = (2g + 1)/f mod q (restart if f is not invertible)
6: return (pk = a1, sk = S) where a1 = 2aq mod 2q
7: end function

1: function VERIFY(µ, pk = a1, (z1, z
†
2, c))

2: if ‖(z1, 2
d · z†2)‖2 > B2 then reject

3: if ‖(z1, 2
d · z†2)‖∞ > B∞ then reject

4: accept iff c = H(bζ · a1 · z1 + ζ · q · ced + z†2 mod p, µ)
5: end function

1: function SIGN(µ, pk = a1, sk = S)
2: y1 ← Dn

Z,σ , y2 ← Dn
Z,σ

3: u = ζ · a1 · y1 + y2 mod 2q
4: c← H(bued mod p, µ)
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: rejection sampling: restart to step 2 except with proba-

bility 1/
(
M exp(−‖Sc‖/(2σ2)) cosh(〈z,Sc〉/σ2

)
9: z†2 ← (bued − bu− z2ed) mod p

10: return (z1, z
†
2, c)

11: end function

Fig. 1. Description of the BLISS signature scheme. The random oracle H takes its values in the set of polynomials in R with 0/1 coefficients and
Hamming weight exactly κ, for some small constant κ. The value ζ is defined as ζ · (q − 2) = 1 mod 2q. The authors of [20] propose four different
sets of parameters with security levels at least 128 bits. The interesting parameters for us are: n = 512, q = 12289, σ ∈ {215, 107, 250, 271},
(δ1, δ2) ∈ {(0.3, 0), (0.42, 0.03), (0.45, 0.06)} and κ ∈ {23, 30, 39}. We refer to the original paper for other parameters and for the definition of
notation like Nκ and b·ed, as they are not relevant for our attack. The underlined instruction (Step 2 in SIGN) is where we introduce our faults.

1: function KEYGEN(n, q)
2: f ← Dn

σ0
, g← Dn

σ0
. σ0 = 1.17

√
q/2n

3: if ‖(g,−f)‖2 > σ then restart . σ = 1.17
√
q

4: if
∥∥(qf̄

f f̄+gḡ
, qḡ

f f̄+gḡ

)∥∥
2
> σ then restart

5: using the extended Euclidean algorithm, compute
ρf , ρg ∈ R and Rf , Rg ∈ Z s.t. ρf · f = Rf mod xn + 1
and ρg · g = Rg mod xn + 1

6: if gcd(Rf , Rg) 6= 1 or gcd(Rf , q) 6= 1 then restart
7: using the extended Euclidean algorithm, compute u, v ∈

Z s.t. u ·Rf + v ·Rg = 1
8: F← qvρg,G← −quρf
9: repeat

10: k←
⌊

F·̄f+G·̄f
f f̄+gḡ

⌉
∈ R

11: F← F− k · f ,G← G− k · g
12: until k=0
13: h← g · f−1 mod q

14: B←
(
Mg −Mf

MG −MF

)
∈ Z2n×2n . short lattice basis

15: return sk = B, pk = h
16: end function

1: function GAUSSIANSAMPLER(B, σ, c) . bi (resp. b̃i) denote
the rows of B (resp. of its Gram–Schmidt matrix B̃)

2: v← 0
3: for i = 2n down to 1 do
4: c′ ← 〈c, b̃i〉/‖b̃i‖22
5: σ′ ← σ/‖b̃i‖2
6: r ← DZ,σ′,c′

7: c← c− rbi and v← v + rbi
8: end for
9: return v . v sampled according to the lattice Gaussian

distribution DL,σ,c

10: end function

1: function SIGN(µ, sk = B)
2: c← H(µ) ∈ Znq
3: (y, z)← (c,0)− GAUSSIANSAMPLER(B, σ, (c,0))
4: . y, z are short and satisfy y + z · h = c mod q
5: return z
6: end function

1: function VERIFY(µ, pk = h, z)
2: accept iff ‖z‖2 + ‖H(µ)− z · h‖2 ≤ σ

√
2n

3: end function

Fig. 2. Description of the GPV-based signature scheme of Ducas–Lyubashevsky–Prest. The random oracle H takes its values in Znq . We denote
by f 7→ f̄ the conjugation involution of R = Z[x]/(xn + 1), i.e. for f =

∑n−1
i=0 fix

i, f̄ = f0 −
∑n−1
i=1 fn−ix

i. Ma represents the matrix of the
multiplication by a in the polynomial basis of R, which is skew-circulant of dimension n. For 128 bits of security, the authors of [23] recommend the
parameters n = 256 and q ≈ 210. The constant 1.17 is an approximation of

√
e/2. The underlined step (the main loop in GAUSSIANSAMPLER) is

where we introduce our faults.

in the underlying sigma protocols, which is denoted by y
in our descriptions. That element consists of one or several
polynomials generated coefficient by coefficient, and the
idea of the attack is to introduce a fault in that random
sampling to obtain a polynomial of abnormally small de-
gree, in which case signatures will leak information about
the private signing key. For simplicity’s sake, we introduce

the attack against BLISS in particular, but it works against
the other Fiat–Shamir type schemes (GLP, PASSSign and
Ring-TESLA) with almost no changes: see the Appendix for
details.

In BLISS, the commitment element actually consists of
two polynomials (y1,y2), and it suffices to attack y1. In-
tuitively, y1 should mask the secret key element s1 in the

5

Alice Bob

seed←$ {0, 1}256

a← SHAKE-128(seed)

s, e← ψn16 s′, e′, e′′ ← ψn16

b← a · s + e
(b, seed)
−−−−−−−→ a← SHAKE-128(seed)

u← a · s′ + e′

v← b · s′ + e′′

v′ ← u · s
(u, r)
←−−−− r←$ HelpRec(v)

ν ← Rec(v′, r) ν ← Rec(v, r)

µ← SHA3-256(ν) µ← SHA3-256(ν)

Fig. 3. Description of the NewHope scheme. The security parameters
given are q = 12289 < 214, n = 1024. The REC and HELPREC
subprocedures are encoding and decoding functions between bits and
coordinates in a small dimension lattice, as fully analyzed in [3]. Note
that computations are taken modq.

Alice Bob

seed←$ U({0, 1}s)
A← Gen(seed)

S,E← χ(Zn×n̄q) S′,E′,E′′ ←$ χ(Zm̄×nq)

B← A · S + E
(B, seed)
−−−−−−−→ A← Gen(seed)

B′ ← S′ ·A + E′

V← S′ ·B + E′′

(B′,C)
←−−−−−− C← 〈V〉2B

K ← Rec(B′ · S,C) K ← bVe2B

Fig. 4. Description of the Frodo scheme with parameters (n, q, χ), and
protocol specific parameters n̄, m̄, B̄ ∈ Z. The matrix A ∈ Zn×n is gen-
erated from seed via a pseudo-random function GEN. Recommended
parameters are n = 752, q = 215, χ an approximate discrete Gaussian
distribution of variance 1.75. Note that computations are taken modq.

relation z1 = ±s1c + y1, and therefore modifying the
distribution of y1 should cause some information about s
to leak in signatures. The actual picture in the Fiat–Shamir
with aborts paradigm is in fact slightly different (namely,
rejection sampling ensures that the distribution of z1 is
independent of s1, but only does so under the assumption
that y1 follows the correct distribution), but the end result
is the same: perturbing the generation of y1 should lead to
secret key leakage.

Concretely speaking, in BLISS, y1 ∈ Rq is a ring element
generated according to a discrete Gaussian distribution3,
and that generation is typically carried out coefficient by
coefficient in the polynomial representation. Therefore, if
we can use faults to cause an early termination of that
generation process, we should obtain signatures in which

3. In the other Fiat–Shamir schemes such as [37], the distribution of
each coefficient is uniform in some interval rather than Gaussian, but
this doesn’t affect our attack strategy at all.

the element y1 is actually a low-degree polynomial. If the
degree is low enough, we will see that this reveals the whole
secret key right away, from a single faulty signature!

Indeed, suppose that we can obtain a faulty signature
obtained by forcing a termination of the loop for sam-
pling y1 after the m-th iteration, with m � n. Then, the
resulting polynomial y1 is of degree at most m − 1. As
part of the faulty signature, we get the pair (c, z1) with
z1 = (−1)bs1c + y1. Without loss of generality, we may
assume that b = 0 (we will recover the whole secret key only
up to sign, but in BLISS, (s1, s2) and (−s1,−s2) are clearly
equivalent secret keys). Moreover, with high probability,
c is invertible: if we heuristically assume that c behaves
like a random element of the ring in terms of invertibility
(which is well verified in practice), c should be invertible
with probability about (1− 1/q)n, which is over 95% for all
proposed BLISS parameters. We thus get an equation of the
form:

c−1z1 − s1 ≡ c−1y1 ≡
m−1∑
i=0

y1,ic
−1xi (mod q) (1)

Thus, the vector v = c−1z1 is very close to the sublattice
of Zn generated by wi = c−1xi mod q for i = 0, . . . ,m− 1
and qZn, and the difference should be s1.

The previous lattice is of full rank in Zn, so the di-
mension is too large to apply lattice reduction directly.
However, the relation given by equation (1) also holds for
all subsets of indices. More precisely, let J be a subset of
{0, . . . , n − 1} of cardinality `, and ϕJ : Zn → ZJ be the
projection (uj)0≤j<n 7→ (uj)j∈J . Then we also have that
ϕJ(z1) is a close vector to the sublattice LJ of ZJ generated
by qZJ and the images under ϕJ of the wi’s; and the
difference should be ϕJ(s1).

Equivalently, using Babai’s nearest plane approach to
the closest vector problem [4], we hope to show that(
ϕJ(s1), B

)
, for a suitably chosen positive constant B, is the

shortest vector in the sublattice L′J of ZJ × Z generated by(
ϕJ(v), B

)
as well as the vectors

(
ϕJ(wi), 0

)
and qZJ×{0}.

The volume of L′J is given by:

vol(L′J) = B · vol(LJ) = B · vol(qZJ)

[LJ : qZJ]
= Bq`−r

where r is the rank of the family
(
ϕJ(w0), . . . , ϕJ(wm−1)

)
in ZJq , which is at most m. Hence vol(L′J) ≥ Bq`−m, and the
Gaussian heuristic predicts that the shortest vector should
be of norm:

λJ ≈
√
`+ 1

2πe
· vol(L′J)1/(`+1)

&

√
`+ 1

2πe
·B1/(`+1)q1−(m+1)/(`+1).

Thus, we expect that
(
ϕJ(s1), B

)
will actually be the short-

est vector of L′J provided that its norm is significantly
smaller than this bound λJ . Now ϕJ(s1) has roughly δ1`
entries equal to ±1, δ2` entries equal to ±2 and the rest
are zeroes; therefore, the norm of

(
ϕJ(s1), B

)
is around√

(δ1 + 4δ2)`+B2. Let us choose B = d
√
δ1 + 4δ2e. The

6

condition for s1 to be the shortest vector LJ can thus be
written as:√

(δ1 + 4δ2) · (`+ 1)�
√
`+ 1

2πe
·B1/(`+1)q1−(m+1)/(`+1)

or equivalently:

`+ 1 &
m+ 1 + log

√
δ1+4δ2

log q

1− log
√

2πe(δ1+4δ2)

log q

. (2)

The denominator of the right-hand side of (2) ranges
from about 0.91 for the BLISS–I and BLISS–II parameter sets
down to about 0.87 for BLISS–IV. In all cases, we thus expect
to recover ϕJ(s1) if we can solve the shortest vector problem
in a lattice of dimension slightly larger than m. This is quite
feasible with the LLL algorithm for m up to about 50, and
with BKZ for m up to 100 or so.

To complete the attack, it suffices to apply the above
to a family of subsets J of {0, . . . , n − 1} covering the
whole set of indices, which reveals the entire vector s1.
The second component of the secret key is then obtained
as s2 = a1s1/2 mod q.

Simulations using our Sage implementation confirm the
theoretical estimates, and show that full key recovery can be
achieved in practice in a time ranging from a few seconds to
a few hours depending on m. Detailed experimental results
are reported in Table 1.

Remark 1. A variant of that attack which is possibly slightly
simpler consists in observing that ϕJ(s1) should be the
shortest vector in the lattice generated by LJ and ϕJ(v).
The bound on the lattice dimension becomes essentially the
same as (2). The drawback of that approach, however, is
that we obtain each ϕJ(s1) up to sign, and so one needs to
use overlapping subsets J to ensure the consistency of those
signs.

Remark 2. Note that a single faulty signature is enough to
recover the entire secret key with this attack, a successful
key recovery may require several fault injections. This is
due to rejection sampling: after a faulty y1 is generated,
the whole signature may be thrown away in the rejection
step. On average, the fault attacker may thus need to inject
the same number of faults as the repetition rate of the
scheme, which is a small constant ranging from 1.6 to 7.4
depending on chosen parameters [20], and even smaller
with the improved analysis of BLISS–B [19].

Remark 3. Finally, we note that in certain hardware settings,
fault injection may yield a faulty value of y1 in which all
coefficients upwards of a certain degree bound are non zero
but equal to a common constant (see the discussion in §7.3).
Our attack adapts to that setting in a straightforward way:
that simply means that y1 is a linear combination of the xi

for small i and of the all-one vector (1, . . . , 1), so it suffices
to add that vector to the set of lattice generators.

4 ATTACK ON HASH-AND-SIGN TYPE LATTICE-
BASED SIGNATURES

Our second attack targets the practical hash-and-sign signa-
ture scheme of Ducas, Lyubashevsky and Prest [23], which

is based on GPV-style lattice trapdoors. More precisely,
the faults we consider are again early loop aborts, this
time in the lattice-point Gaussian sampling routine used in
signature generation.

4.1 Description of the attack
The attack can be described as follows. A correctly gener-
ated signature element is of the form z = R · f + r · F ∈
Z[x]/(xn + 1), where the short polynomials f and F are
components of the secret key, and r,R are short random
polynomials sampled in such a way that z follows a suitable
Gaussian distribution. In fact, r,R are generated coefficient
by coefficient, in a single loop with 2n iterations, going
from the top-degree coefficient of r down to the constant
coefficient of R.

Therefore, if we inject a fault aborting the loop after
m ≤ n iterations (in the first half of the loop), the resulting
signature simply has the form:

z = r0x
n−1F + r1x

n−2F + · · ·+ rm−1x
n−mF.

Any such faulty signature is, in particular, in the lattice L
of rank m generated by the vectors xn−iF, i = 1, . . . ,m, in
Z[x]/(xn + 1).

Suppose then that we obtain several signatures
z(1), . . . , z(`) of the previous form. If ` is large enough
(slightly more than m is sufficient; see §4.2 below for an
analysis of success probability depending on `), the corre-
sponding vectors will then generate the lattice L. Assuming
the lattice dimension is not too large, we should then be
able to use lattice reduction to recover a shortest vector in
L, which is expected to be one of the signed shifts ±xn−iF,
i = 1, . . . ,m, since the polynomial F is constructed in a such
a way as to make it quite short relative to the Gram–Schmidt
norm of the ideal lattice it generates. Hence, we can recover
F among a small set of at most 2m candidates.

And recovering F is actually sufficient to reconstruct the
entire secret key (f ,g,F,G), and hence completely break
the scheme. This is due to the particular structure of the
NTRU lattice. On the one hand, G is linked to F via the
public key polynomial h: G = F · h mod q, so we obtain it
directly. On the other hand, the basis completion algorithm
of Hoffstein et al. [38] allows to recover the pair (f ,g) from
(F,G) via the defining relation f · G − g · F = q. This is
actually used in the opposite direction in the key generation
algorithm of the scheme of Ducas et al. (i.e. they construct
(F,G) from (f ,g): see steps 5–12 of KEYGEN in Figure 2),
but applying [38, Theorem 1], the technique is easily seen to
work in both ways.

Moreover, if we start from a polynomial of the form ζF
where ζ is of the form±xα, then applying the previous steps
yields the quadruple (ζf , ζg, ζF, ζG), which is also a valid
secret key equivalent to (f ,g,F,G), in the sense that signing
with either keys produces signatures with exactly the same
distributions. Thus, we do not even need to carry out an
exhaustive search on several possible values of F after the
lattice reduction step: it suffices to use the first vector of the
reduced basis directly.

4.2 How many faults do we need?
Let us analyze the probability of success of the attack de-
pending on the iteration m at which the iteration is inserted

7

TABLE 1
Experimental success rate of the attack and average CPU time for key recovery for several values of m, the iteration after which the loop-abort

fault is injected. We attack the BLISS–II parameter set (n, q, σ, δ1, δ2, κ) = (512, 12289, 10, 0.3, 0, 23) from [20]. Since the choice of ` has no effect
on the concrete fault injection (e.g. it does not affect the required number of faulty signatures, which is always 1), we did not attempt to optimize it
very closely. The simulation was carried out using our Sage implementation on a single core of an Intel Xeon E5-2697v3 workstation, using 100

trial runs for each value of m.

Fault after iteration number m = 2 5 10 20 40 60 80 100
Theoretical minimum dimension `min 3 6 11 22 44 66 88 110

Dimension ` in our experiment 3 6 12 24 50 80 110 150
Lattice reduction algorithm LLL LLL LLL LLL BKZ–20 BKZ–25 BKZ–25 BKZ–25
Success probability (%) 100 99 100 100 100 100 100 98
Avg. CPU time to recover ` coeffs. (s) 0.002 0.005 0.022 0.23 7.3 119 941 33655
Avg. CPU time for full key recovery 0.5 s 0.5 s 1 s 5 s 80 s 14 min 80 min 38 h

TABLE 2
Experimental success probability of the attack and average CPU time for key recovery for several values of m, the iteration after which the

loop-abort fault is injected. We consider the attack with ` = m+ 1 and ` = m+ 2 faulty signatures. The attacked parameters are
(n, q) = (256, 1021) as suggested in [23] for signatures. The simulation was carried out using our Sage implementation (see the Appendix) on a

single core of an Intel Xeon E5-2697v3 workstation, using 100 trial runs for each pair (`,m).

Fault after iteration number m = 2 5 10 20 40 60 80 100
Lattice reduction algorithm LLL LLL LLL LLL LLL LLL BKZ–20 BKZ–20

Success probability for ` = m+ 1 (%) 75 77 90 93 94 94 95 95
Avg. CPU time for ` = m+ 1 (s) 0.001 0.003 0.016 0.19 2.1 8.1 21.7 104

Success probability for ` = m+ 2 (%) 89 95 100 100 99 99 100 100
Avg. CPU time for ` = m+ 2 (s) 0.001 0.003 0.017 0.19 2.1 8.2 21.6 146

and the number ` > m of faulty signatures z(i) available. As
we have seen, a sufficient condition for the attack to succeed
(provided that our lattice reduction algorithm actually finds
a shortest vector) is that the ` faulty signatures generate
the rank-m lattice L defined above. This is not actually
necessary (the attack works as soon as one of the shifts of
F is in sub-lattice generated by the signatures, rather than
all of them), but we will be content with a lower bound on
the probability of success.

Now, that condition is equivalent to saying that the
vectors (r

(i)
0 , . . . , r

(i)
m−1) ∈ Zm (sampled according to the

distribution given by the GPV algorithm) that define the
faulty signatures:

z(i) = r
(i)
0 xn−1F + · · ·+ r

(i)
m−1x

n−mF

generate the whole integer lattice Zm. But the probability
that ` > m random vectors generate Zm has been computed
by Maze, Rosenthal and Wagner [47] (see also [28]), and is
asymptotically equal to

∏`
k=`−m+1 ζ(k)−1. In particular, if

` = m+ d for some integer d, it is bounded below by:

pd =
+∞∏

k=d+1

1

ζ(k)
.

Thus, if we take ` = m + 1 (resp. ` = m + 2, ` = m + 3),
we expect the attack to succeed with probability at least
p1 ≈ 43% (resp. p2 ≈ 71%, p3 ≈ 86%).

As shown in Table 2, this is well verified in practice
(and the lower bound is in fact quite pessimistic: see the
Appendix for an extended discussion). Moreover, the attack
is quite fast even for relatively large values of m: only a
couple of minutes for full key recovery for m = 100.

5 ATTACK ON NEWHOPE KEY EXCHANGE

We present an attack against the NewHope key exchange
protocol and more specifically the generation of the “com-
mitment” elements e, e′. By the inherent symmetry of the
protocol, we describe the attack when mounted on Alice’s
side. The adaptation to Bob’s side is done mutatis mutandis.

In this scheme, the commitment element consists of a
polynomial e, which intuitively plays the role of an additive
mask to the secret key element s in the relation:

b = a · s + e.

As a consequence, tampering with the distribution of e
should cause some information leakage when sending the
element b to Bob.

More formally, e ∈ Rq is a ring element drawn from
the centered binomial distribution ψ16. Its generation is typ-
ically carried out coefficient by coefficient in a polynomial
representation. Thus, if one can use faults to cause an early
termination of that generation process, we should obtain
elements in which the element e is actually a low-degree
polynomial. If the degree is low enough, we will see that
this reveals the whole secret key right away, from a single
faulty element: this is quite similar to the attack on BLISS.

Indeed, suppose that we can obtain a faulty element b
obtained by forcing a termination of the loop for sampling
e after the m-th iteration, with m� n, that is, the resulting
polynomial e is of degree at most m − 1. As part of the
commitment message, we get the pair (seed,b), and since
the generation of a is both deterministic and public, the pair
(a,b) with

b = s · a + e.

8

With high probability, a is invertible: if we heuristically
assume that a behaves like a random element of the ring
from that standpoint, we expect it to be the case with
probability about (1 − 1/q)n, which is slightly over 92%
for the proposed NewHope parameters. We thus get an
equation of the form:

a−1b ≡ s+a−1e ≡ s+
m−1∑
i=0

eia
−1xi︸ ︷︷ ︸

∈SpanZ((a−1xi)0≤i≤m−1)

(mod q) (3)

for integers e0, . . . , em−1. Thus, the vector v = a−1b is
close to the sublattice L of Zn generated by the elements
wi = a−1xi mod q for i = 0, . . . ,m − 1 and qZn. Then the
difference between L and v should be precisely s. The rest of
the analysis is similar to the attack against BLISS. The main
difference lies in the fact that s is sampled according to the
n-dimensional centered binomial distribution of parameter
k = 16 instead of a discrete Gaussian distribution. All in all
the computations yield the following condition on `:

`+ 1 &
m+ 1 + log

√
k/2

log q

1− log
√
k/2
√

2πe
log q

. (4)

The denominator of the right-hand side of (4) is roughly
about 0.70 for the parameters sets. We thus expect to recover
s if we can solve the shortest vector problem in a lattice of
dimension slightly larger than m/0.7 ≈ 1.4 ·m. This is quite
feasible with the LLL algorithm for m up to about 40, and
with BKZ for m up to 80 or so.

6 ATTACK ON FRODO KEY EXCHANGE

Our second attack targets the Frodo key exchange protocol.
See also the Appendix for a discussion of an attack on
Kyber [12], which has some similarity to the one below.
Like in the previous attack we tamper the generation of the
“commitment” matrices E,E′. By the inherent symmetry
of the protocol, we describe the attack on Bob’s side. The
adaptation to Alice’s side is straightforward, once one takes
into account the simple observation the multiplication by
the secret is performed on the other side of the public matrix
A (left-multiplication for Bob and right-multiplication for
Alice).

In this scheme, the commitment matrix consists on a
vector E′, which acts as an additive mask to the secret key
matrix S′ in the relation:

B′ = S′ ·A + E′.

As a consequence, tampering the distribution of E′ leaks
some information when sending the matrix B′ to Bob.

More formally, E′ ∈ Zn×n̄q is a matrix of integers, whose
coefficients are independently drawn under a discrete Gaus-
sian distribution. Hence its generation is then once again
typically carried out coefficient by coefficient, allowing us to
use faults to cause an early abort of this generation process.
However, since we are dealing with matrices instead of
vectors as in the previous attacks, there is a subtlety in the
way the generation can be carried out. The entries of the
matrix can be sampled column-by-column or row-by-row,
and these two generation algorithms are not equivalent from

the standpoint of our attack. In the former case an early
abort on the outermost loop of the generation process leads
to a matrix with a certain number of column correctly set
and then a family of zero column vectors:

E′ =
[
E′1 0

]
. (5)

In the latter case an early abort makes arise a matrix with
full first rows, followed with a certain number of zero rows
vectors:

E′ =

[
E′1
0

]
. (6)

6.1 Column-wise generation
We first focus on the case where the generation is carried
out column-by-column, so that the fault attack yields a matrix
E′ of the form (5).

Precisely, let us consider a matrix B′ obtained by forcing
a termination of the loop for sampling E′ after the m-th
iteration, with m � n (that is, the resulting matrix E′

has at most m − 1 non-zero columns, collected in a plain
matrix denoted by E′1). Without loss of generality, we can
assume the non-zero columns are the first ones. As part of
the commitment message, we get the pair (seed,B′), and
since the generation of A is both deterministic and public,
we have access to the pair (A,B′) of integer matrices,
satisfying the following relation taken modulo q (notice that
the block decomposition is taken to be consistent with the
block decomposition of E in [E′1|0]):[

B′1 B′2

]
= B′ = S′ ·A + E′

=
[
S′1 S′2

] [A1 A2

A3 A4

]
+
[
E′1 0

]
,

yielding the system:{
S′1 ·A1 + S′2 ·A3 = B′1 − E′1
S′1 ·A2 + S′2 ·A4 = B′2

mod q.

Let us suppose at that point that A4 is invertible4 mod q.

{
S′1 ·A1 + S′2 ·A3 = B′1 − E′1

S′2 = (B′2 − S′1 ·A2) ·A−1
4

mod q,

(7)
yielding by replacement in the first equation:

S′1 · (A1 −A2 ·A−1
4 ·A3) +E′1 = B′1 −B′2 ·A−1

4 ·A3 mod q

This equation is then of shape S′1 · Ã+ E′1 = B̃.
Suppose now that Ã = (A1 − A2 · A−1

4 · A3) is also
invertible. Then performing the inversion trick described in
the attack against NewHope yields:

B̃ · Ã−1 = S′1 + E′1 · Ã−1 mod q

Considering separately each of the n rows yields n equa-
tions on vectors:

∀i,
[
B̃Ã−1

]
i

= [S′1]i +
[
E′1 · Ã−1

]
i︸ ︷︷ ︸

∈SpanZ((ei,jÃ−1)0≤j≤m−1)

mod q

4. Seeing this matrix as a random uniform m × m matrix over Fq ,
which is invertible with probability

∏m
i=1(1− q−i).

9

where ei,j is the (i, j) − th elementary matrix. The attack
is then mounted to recover each rows, exactly in the same
fashion as before, this time considering the n lattices of rank
m, (Li)0≤i<m, generated by the w

(i)
j = Ã−1(ei,j)j mod q

for j = 0, . . . ,m− 1 and qZm. Notice that here the recovery
can be performed directly by solving the SVP problem in
these lattices since their common rank, m is supposed to be
small. Once S′1 is recovered, Equation (7), allows to recover
directly S′2 by linear algebra.

6.2 Row-wise generation
We now turn to the case where the generation is conducted
row-by-row, so that E′ is of the form (6).

More precisely, consider a matrix B′ obtained by forcing
a loop abort during the sampling E′ after the m-h iteration,
with m � n (that is, the resulting matrix E′ has at most
m − 1 non-zero rows, collected in a full matrix denoted
by E′1). Without loss of generality, we can assume the non-
zero columns are the first ones. Once again, we get access to
the pair (A,B′) of integer matrices, satisfying the following
relation taken modulo q:[

B′1
B′2

]
= B′ = S′ ·A + E′

=

[
S′1 S′2
S′3 S′4

] [
A1

A2

]
+

[
E′1
0

]
.

In this case, no factorization similar to the one appearing
in the previous section allows to reduce the problem to a
smaller instance. As a result, in this setting, it does not seem
possible to mount the loop-abort fault attack on Bob’s side!

However, note that in this case, the scheme is vulnerable
on Alice’s side. Indeed, taking the same notations one have,
by tampering the generation of E to get the following
equation once (A,B) are obtained:

[
B1

B2

]
= B = A · S + E

=

[
A1 A2

A3 A4

] [
S1

S2

]
+

[
E1

0

]
.

yielding the system:{
A1 · S1 +A2 · S2 = B1 − E1

A3 · S1 +A4 · S2 = B2

mod q,

which is of the same shape of Equation (7). The discussion
of Paragraph 6.1 can then be directly adapted to recover S1

and S2.

7 FEASIBILITY OF THE FAULTS

In this section, we investigate how an attacker may obtain
helpful faulty values for the proposed attacks. We base our
discussion on two available implementations of BLISS sig-
nature, namely the software implementation of Ducas and
Lepoint [21] and the FPGA implementation by Pöppelmann
et al. [62], and on Prest’s software implementation of the
GPV-based scheme of Ducas et al. [63]. The discussion
extends to the other signature schemes and to the key

exchange protocols directly, since the type of faulty behavior
we want to cause (loop aborts) is the same in all cases.

We emphasize that those three implementations were
not supposed to have any resilience with respect to fault
attacks and were only developed as proofs of concept to
illustrate the efficiency properties of the schemes. The point
here is to show that the fault attacks presented in this paper
are relevant based on the analysis of freely available and
published implementations to put forward the need for
dedicated protections against faults attacks (when attackers
have such abilities).

7.1 Classical fault models
Faults during a computation may be induced by differ-
ent means as a laser beam shot, electromagnetic injection,
under-powering, glitches, etc. These faults are mainly char-
acterized by their

• range: impacting a single bit or many bits (e.g. regis-
ter or memory word);

• effect: typically target chunk is set to a chosen value,
random value or all-zero/all-one value;

• persistence: a fault may only modify the target for a
short period or it may be definitive.

Obviously, some fault models are close to being purely
theoretical: it is very unlikely to be able to set a 32-bit
register to 0xbad00dad during precisely 2 cycles. Never-
theless, many recent works have been published showing
that some faults models that seemed overly ambitious are
actually achievable during lab experiments with good re-
producibility. That is true for single-bit faults both using EM
[54] or laser injections [13]. There are also many reported
instruction-skipping faults in the literature. One example
of such faults is the work of Rivière et al. on ARMv7
instruction cache [64].

In the next subsections, we discuss which fault models5

may lead to faulty signatures that are relevant with respect
to the attacks presented in this paper.

7.2 Fault attacks on software implementations
In BLISS, the polynomial y1 can be generated using a loop
over the n coefficients. This is indeed how the implemen-
tation in [21] does it: a loop constructs the polynomials y1

and y2 coefficient by coefficient using a Gaussian sampler
(function Sign::signMessage). The condition to perform
the attack successfully is not very demanding since we only
try to ensure that three quarters or so of the coefficients of
y1 are fixed to zero. Such a result can easily be obtained by
exiting the loop after a few iterations. A random fault on
the loop counter or skipping the jump operation will lead to
such a result.

Notice here that it is not trivial to decide whether a faulty
signature will be helpful or not. Hopefully, the required
timing precision is much less important in this setting since
the attack will succeed even with 50 unknown coefficients
out of 512. This means that the time window for the fault to
occur is composed of dozens of loop iterations. Moreover,
we may use side-channel analysis to detect the loop iteration

5. We only focus on single fault attacks here.

10

pattern to trigger the fault injection. That pattern is likely to
be detected after much fewer than 50 iterations, and thus it
seems that the synchronization here will be quite easy.

Similarly, the short random polynomials R and r used in
the GPV scheme are generated in a single loop [63] ranging
from leading coefficient of r to the constant term in R which
allows to fault both polynomials using a single fault. Again,
a random fault on the counter or skipping a jump makes
it work and the time window is large since, according to
the results described in Table 2, if one collects say 50 faulty
signatures, one can tolerate close to 50 executed iterations
each time.

To conclude, these attacks seem to be a real threat
since synchronization (which is a major difficulty when
performing fault attacks in general) is made easy by the
loose condition on the number of known coefficients in the
faulty polynomials.

7.3 Fault attacks on hardware implementations

In BLISS, the generation of the polynomial y1 requires
sampling n random coefficients, where n = 512 in the
most common parameter settings. Even in hardware, it is
highly unlikely that all these coefficients are obtained at
the same time (n is simply too large); thus, the generation
of y1 is most likely to be sequential. This is the case in
the implementation we took as example where the super
memory is linked to the sampler through a 14-bit port.
We may fault a flag or a state register to fool the control
logic (in this case, the BLISS coprocessor) and keep part
of the BRAM cells to their initial state. If this initial state
is known then we know all the corresponding coefficients
and hopefully, the number of unknown ones will be small
enough for the attack to work. Again, the large number
of unknown coefficients supported by the attack helps the
adversary by providing a large time window for the fault
to occur. The feasibility of the attack will mostly depend on
the precise flag/state implementation and the knowledge of
the previous/initial value of memory cells.

There is a second way of performing the fault injection
here. The value of y1 has to be stored somehow until the
computation of z1 (close to the end of the signature gen-
eration). In the example implementation, a BRAM is used.
We may fault BRAM accesses to fix some coefficients to a
known value. A possible fault would be to set the rstram or
rstreg signal to one (Xilinx’s nomenclature). Indeed, when
set to one, this will set the output latches (resp. register) of
the RAM block to some fixed value SRVAL defined by the
designer. We may notice two points to understand why this
kind of fault enables the proposed attack.

(i) The value y1 used to compute u will not be the
faulted one but this has no impact on the attack.

(ii) If we do not know the default value for the output
register, all coefficients are unknown but a big part
of them are equal to the same unknown default
value. In that case, the attack is still applicable by
adding one generator to the constructed lattice: see
Remark 3 in §3.

Again a large time window is given to the attacker due to
sequential read induced by the size of y1.

The BRAM storage of y1 helps the attacker since a single
bit-set fault may have effects on many coefficients. The only
difficulty seems to be able to perform a single-bit fault—
which is a real threat as stated in §7.1—as well as the
localization of the rstram signal6.

8 IMPLEMENTATION OF THE FAULTS

In this section, we further validate the proposed attack
model in software against two different platforms. We
consider the specific case of NewHope, and compile a
lightweight implementation of it for the SPARC-based 32-bit
LEON3 processor, as well as for the 8-bit Atmel XMEGA128
microcontroller.

In the case of the LEON3 code, we carry out a simulation
of our loop abort fault using a tool [56] based on the
tsim LEON3 emulator. And in the case of the XMEGA
code, we actually mount the attack in practice using the
ChipWhisperer-Lite side-channel and fault analysis evalua-
tion board [53]; we use clock glitches to inject the fault, and
successfully manage to cause early loop aborts.

8.1 Simulated faults on LEON3
To confirm that an instruction-skipping fault actually leads
to a full secret recovery, we have first simulated fault attacks
on NewHope (both on s and e) using the tool made avail-
able by authors of [56]. They propose a python script that
makes calls to the Aeroflex Gaisler’s LEON3 CPU simulator
(namely tsim) to simulate the replacement of one or more
instruction by a nop (or to modify some data but it is out of
our interest here). The LEON3 is a 32-bit processor (SPARC
architecture) with freely available source code. Thus, it can
be used as a soft-core (i.e. a processor instantiated on an
FPGA) or directly integrated as an IP for an ASIC. This
target is the only one for which a fault simulator is available
thus it is a perfect candidate to simulate the proposed attack.

For both polynomials e and s, the generation from
the “small” (centered binomial) distribution in NewHope
is performed by first generating some pseudorandom bits
using Chacha20 then processing each resulting 32-bit word
to convert it into a binomially distributed value (function
poly_get_noise). Our fault injection simulation targets
this loop, in particular, attempting to cause an early abort in
its execution.

More precisely, sufficiently many random bytes are first
obtained and stored in a 32-bit word buffer. They are then
processed to derive polynomial coefficients which are stored
in a 16-bit word array. We first directly targeted the second
loop (where coefficients are derived from random words)
and managed to obtain two relevant faults in a few hours
of simulation. This was mainly due to the fact that the
granularity of the simulator is a range of address to fault.
Due to the binary code structure, a jumping instruction
was present in this range leading to a huge amount of
executed code between the first and the last potentially

6. Since y1 is not output directly, checking if the attack actually
worked can be a bit tricky. Again side-channel collision analysis may
help here. We may also notice that if the faulty y1 is sparse (that is
known coefficients have been set to zero) then the number of non-zero
coefficients in the corresponding z1 should be significantly smaller than
for a z1 corresponding to a dense y1.

11

Fig. 5. The ChipWhisperer-Lite evaluation board, with XMEGA micro-
controller target attached.

faulted instruction. This resulted in a large simulation time.
Due to time limitations, we did not try to modify the
script from [56] to take this particular situation into account.
Indeed, two faulty outputs corresponding to loop aborts in
the first and second iterations were observed and allowed
key-recovery and this was enough to confirm that the attack
was an actual threat when instruction-skip faults can be
injected on the device.

Nevertheless, and for the sake of completeness, the code
has been modified to first derive coefficients in place and
then to copy coefficients in the polynomial structure. This
latter copy has been moved into a dedicated function to
narrow the step-by-step simulation region. Using this code
modification faults have been obtained for all abort iteration
indexes. These faulty outputs have then been used to feed a
sage attack script recovering the key (when the number of
iterations is small enough).

This confirms that skipping an instruction will lead to
the expected behavior according to the widely deployed
simulator for the LEON3 core. In particular, this shows that
there is no side-effect of the fault nor of the targeted code
that would render the proposed attack more complicated or
inefficient than expected.

8.2 Concrete faults on XMEGA with ChipWhisperer
Finally, we concretely mount our fault attack against the
same software implementation of NewHope, this time com-
piled for the Atmel XMEGA128D4 8-bit microcontroller
coming with the ChipWhisperer-Lite evaluation board [53].
The ChipWhisperer-Lite (Fig. 5) enables the injection of
clock and voltage glitches during the execution of the com-
piled code on the microcontroller. We successfully use clock
glitches to cause an early loop abort in the generation of the
polynomial e, allowing a full secret key recovery with the
attack of §5.

While the XMEGA128D4 has a substantial amount of
flash memory to store the compiled code, it has only 8 KB of
RAM, which makes it impossible to run the entire NewHope
code on the microcontroller. As a result, we have to do some
offline precomputations on the host computer and store
the result in the compiled binary before the experiment.
However, the relevant part of the code as far as our attack
is concerned, namely the loop generating the polynomial e

from pseudorandom bits generated in advance (or the copy
moving the result to the target area in memory), can be exe-
cuted in full, and we can carry out our clock glitches against
it. In addition, we note that the XMEGA executes the more
time-consuming operations in NewHope like the direct and
inverse number-theoretic transforms without problem.

Another way in which we “cheat” slightly in our fault
attack is by raising a hardware trigger in the code before
the execution of the loop of interest. Using more advanced
tooling than the ChipWhisperer-Lite, however, it would be
easy to replace that manually inserted trigger by a trigger on
the waveform of the power trace before entering the loop.
Such a triggering mechanism is for example available in
the ChipWhisperer-Pro (which can detect patterns in power
traces using SAD) and most higher-end oscilloscopes.

Apart from those slight changes to accommodate for our
very lightweight target, we are able to mount the glitch at-
tack on an almost unmodified implementation of NewHope.
It takes some time to select proper parameters for the
clock glitches, so as to obtain reliably reproducible faults,
but the “glitch explorer” included in the ChipWhisperer
Capture software makes this a relatively painless exercise.
In the end, we ended up selecting one-shot clock glitches
of width 2.5% of a clock period and offset −5.5% of a
period: in other words, at the clock cycle where the fault
is injected, the square signal providing the clock input for
the microcontroller is modified by XORing it with a short
rectangular pulse of the same amplitude as the original
signal, slightly before the normal raising edge. This reliably
caused a perturbation in the execution of the code on the
microcontroller, which can be observed on power traces: see
Fig. 6 (the effect is especially visible when we repeat the
glitch over multiple cycles, as in Fig. 6(c), but such a long
glitch causes the device to reset, and hence is not useful after
parameter selection is complete). Note that although it took
us some time to choose those parameters, reliable faults can
be obtained from a relatively large range of parameters: see
the short discussion in the Appendix and its accompanying
figure.

When inserting the glitch at a suitable offset from the
trigger, we were able to cause an early loop abort after
any chosen number of iterations. More precisely, on the
compiled code used in our experiments, inserting the glitch
at offset 12k + 9 clock cycles after the trigger is raised7, we
obtained an exit of the loop after exactly k iterations, and
hence a polynomial e of degree exactly k − 1 allowing to
recover the entire secrets for all small values of k. This result
is highly reproducible in our setup: among 100 injected
faults at various offsets, we obtained 97 successful loop
aborts after the expected number of iterations.

9 POSSIBLE COUNTERMEASURES

We have shown that unprotected implementations of lattice-
based signature and key exchange schemes are vulnerable to
fault attacks, in fault models that our analysis suggests are
quite realistic: the faulty signatures required by our attacks
can be obtained on actual implementations. As a result,

7. Like the parameters for the glitches, this offset pattern was also
found by trial and error using the glitch explorer in ChipWhisperer
Capture.

12

Fig. 6. Power traces of the target loop in NewHope on the XMEGA
microcontroller, with and without faults. Sampling rate is 4× the clock
frequency.

Power Trace View

0 10.2 0.4 0.6 0.8

Sample (kPts.)

0

-0.4

-0.2

0.2

0.4

D
at

a

(a) Trace without fault injection

Power Trace View

0 10.2 0.4 0.6 0.8

Sample (kPts.)

0

-0.4

-0.2

0.2

0.4

D
at

a

(b) Trace with single glitch at offset 33

Power Trace View

0 10.2 0.4 0.6 0.8

Sample (kPts.)

0

-0.4

-0.2

0.2

0.4

D
at

a

(c) Trace with 20 glitched cycles from offset 33

countermeasures should be added in applications where
such a physical attacker is relevant to the threat model.

Simple countermeasures exist to thwart the single fault
attacks proposed. There are simple, non-cryptographic
countermeasures that consist in validating that the full loop
has been correctly performed. This can be achieved for
instance by adding a second loop counter and doing a con-
sistency check after exiting the loop. Such a countermeasure
is very cheap and we therefore recommend introducing it in
all deployed implementations.

Nevertheless, it will only detect early-abort faults while
an attacker may succeed in getting the same kind of faulty
signature using another technique. For instance, we men-
tioned the possibility of faulting BRAM blocks so that they
output a fixed value. For software implementations, the
compiler may decide to put the coefficient in some RAM
location which address could be faulted to point to another
part of the memory leading in many coefficients having
the same value. A single fault may also alter instruction
cache leading to a nop operation instead of a load from
memory and thus not updating the coefficient. We propose
now other countermeasures that may deal with this issue
for both types of signature schemes we considered.

We have described our attack on the Fiat–Shamir
schemes in a setting where the attacker can obtain a com-
mitment polynomial y of low degree and it works more
generally with a sparse y, provided that the attackers knows

where the non zero coefficients are located. If the locations
are unknown, however, the attack does not work, so one
possible countermeasure is to randomize the order of the
loop generating y. One should be careful that this may not
protect against faults introduced after the very first few
iterations, however: in the case of BLISS, for example, we
have seen that we could easily attack polynomials y in
which the non zero coefficients are located in the 20% lower
degree coefficients, say; then, if a fault attacker can collect a
few hundred faulty signatures with y of very low Hamming
weight (say 3 or 4) at random positions, they have a good
chance of finding one fault with all non zero coefficients
in the lower 20%, and hence be able to attack. The same
observation applies to the key exchange protocols.

Another possible approach for the Fiat–Shamir schemes
is to check that the degree of the generated y is not too
low. One cannot demand that all its coefficients are non
zero, as this would skew the distribution and invalidate the
security argument, but verifying that the top ε·n coefficients
of y are not all zero for some small constant ε > 0, say
ε = 1/16, would be a practical countermeasure that does
not affect the security proof. Indeed, in the case of BLISS,
for example, the probability that all of these coefficients
vanish is roughly (1/σ

√
2π)εn, which is exponentially small.

Thus, the resulting distribution of y after this check is
statistically indistinguishable from the original distribution
and security is therefore preserved. Moreover, the lattice
dimension required to mount our fault attack is then greater
than (1− ε)n, so it will not work. An additional advantage
of that countermeasure is that it also adapts easily to thwart
faults that cause all the top coefficients of y to be equal
to some constant non-zero value. Again, this method is
also applicable to NewHope (where the larger size of the
coefficient vectors ensures that a smaller ε ≈ 0.3 suffices
to achieve a statistical distance below 2−128). It can also be
adapted relatively easily to Frodo and Kyber as well (in fact,
for Frodo, one could even require all the rows and columns
of the noise matrices to be non-zero for maximum safety, al-
though the countermeasure then becomes somewhat costly).

Regarding the hash-and-sign signature of Ducas et al.,
one possible countermeasure is to simply check the validity
of generated signatures. This will usually work due to
the fact that a faulty signature generated from an early
loop abort from the GAUSSIANSAMPLER algorithm is of
significantly larger norm than a valid signature: a rough
estimate of the norm after m ≤ n iterations is ‖F‖2

√
mq/12

(as q/12 is the variance of a uniform random variable in
{−(q − 1)/2, . . . , (q − 1)/2}), which is too large for correct
verification even for very small values of m. An added
benefit of that countermeasure is that even the correct
signature generation algorithm has a very small but non
zero probability of generating an invalid signature, so this
countermeasure doubles up as a safeguard against those
rare accidental failures.

10 CONCLUSION AND OUTLOOK

The main takeaway of our results is that physical attacks,
and particularly faults, can be a devastating threat against
lattice-based schemes. Extensive research has been con-
ducted on fault attacks against RSA and discrete logarithm-

13

based schemes, so that both threats and countermeasures
are well-understood. As lattice-based cryptography ad-
vances closer to real-world deployment, similar efforts need
to be devoted to their fault analysis.

This paper considered one class of attacks, loop-abort
faults, that has wide-ranging applicability to lattice-based
signature schemes and key exchange protocols. It is also
a relatively cheap attack to protect against, so introducing
countermeasures in actual implementations is strongly rec-
ommended.

Future work could extend our results both by widening
the scope of possible schemes vulnerable to that class of
attacks (e.g. loop-abort faults have also recently been shown
to be a threat to isogeny-based cryptography [31]), and
by considering other, possibly more advanced fault attacks
on the same schemes. Another possible avenue for further
research could be the provable security of certain fault coun-
termeasures on lattice-based (such as the ones discussed
above) within a sufficiently restricted fault model. Results
of this type have been obtained before on RSA [6], [15], for
example, although it is usually not hard to bypass the limits
of the corresponding fault model [29].

Acknowledgments

We acknowledge the support of the French Programme
d’Investissement d’Avenir under national project RISQ. This
work is also partially supported by the European Union
projects PROMETHEUS (Horizon 2020 Research and Inno-
vation Program, grant 780701) and HEAT (Horizon 2020
Research and Innovation Program, grant 644209).

REFERENCES

[1] S. Akleylek, N. Bindel, J. A. Buchmann, J. Krämer, and G. A.
Marson. An efficient lattice-based signature scheme with provably
secure instantiation. In D. Pointcheval, A. Nitaj, and T. Rachidi,
editors, AFRICACRYPT, volume 9646 of LNCS, pages 44–60.
Springer, 2016.

[2] E. Alkim, N. Bindel, J. A. Buchmann, Ö. Dagdelen, E. Eaton,
G. Gutoski, J. Krämer, and F. Pawlega. Revisiting TESLA in the
quantum random oracle model. In T. Lange and T. Takagi, editors,
PQCrypto, volume 10346 of LNCS, pages 143–162. Springer, 2017.

[3] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-
quantum key exchange - A new hope. In T. Holz and S. Savage,
editors, USENIX Security Symposium, pages 327–343. USENIX As-
sociation, 2016.

[4] L. Babai. On Lovász’ lattice reduction and the nearest lattice point
problem. Combinatorica, 6(1):1–13, 1986.

[5] S. Bai and S. D. Galbraith. An improved compression technique
for signatures based on learning with errors. In J. Benaloh, editor,
CT-RSA, volume 8366 of LNCS, pages 28–47. Springer, 2014.

[6] G. Barthe, F. Dupressoir, P. Fouque, B. Grégoire, M. Tibouchi, and
J. Zapalowicz. Making RSA-PSS provably secure against non-
random faults. In L. Batina and M. Robshaw, editors, CHES,
volume 8731 of LNCS, pages 206–222. Springer, 2014.

[7] I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on
elliptic curve cryptosystems. In M. Bellare, editor, CRYPTO,
volume 1880 of LNCS, pages 131–146. Springer, 2000.

[8] N. Bindel, J. A. Buchmann, and J. Krämer. Lattice-based signature
schemes and their sensitivity to fault attacks. In P. Maurine and
M. Tunstall, editors, FDTC, pages 63–77. IEEE Computer Society,
2016.

[9] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology,
14(2):101–119, 2001.

[10] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Niko-
laenko, A. Raghunathan, and D. Stebila. Frodo: Take off the
ring! Practical, quantum-secure key exchange from LWE. In E. R.
Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
editors, ACM CCS, pages 1006–1018. ACM, 2016.

[11] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum
key exchange for the TLS protocol from the ring learning with
errors problem. In L. Bauer and V. Shmatikov, editors, IEEE S&P,
pages 553–570. IEEE Computer Society, 2015.

[12] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, and D. Stehlé. CRYSTALS - Kyber: a CCA-
secure module-lattice-based KEM. In F. Piessens and M. Smith,
editors, EuroS&P. IEEE Computer Society, 2018.

[13] C. Champeix, N. Borrel, J. Dutertre, B. Robisson, M. Lisart, and
A. Sarafianos. SEU sensitivity and modeling using pico-second
pulsed laser stimulation of a D flip-flop in 40 nm CMOS technol-
ogy. In O. Khan and M. K. Michael, editors, DFT, pages 177–182.
IEEE Computer Society, 2015.

[14] L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone. Report on post-quantum cryptography. Tech-
nical report, National Institute of Standards and Technology, Feb.
2016. Available at http://csrc.nist.gov/publications/drafts/nistir-
8105/nistir 8105 draft.pdf.

[15] J. Coron and A. Mandal. PSS is secure against random fault
attacks. In M. Matsui, editor, ASIACRYPT, volume 5912 of LNCS,
pages 653–666. Springer, 2009.

[16] Ö. Dagdelen, R. E. Bansarkhani, F. Göpfert, T. Güneysu, T. Oder,
T. Pöppelmann, A. H. Sánchez, and P. Schwabe. High-speed signa-
tures from standard lattices. In D. F. Aranha and A. Menezes, edi-
tors, LATINCRYPT, volume 8895 of LNCS, pages 84–103. Springer,
2015.

[17] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush,
V. Smelyanskiy, J. Martinis, and H. Neven. What is the Com-
putational Value of Finite Range Tunneling? ArXiv e-prints, Dec.
2015.

[18] J. Ding, X. Xie, and X. Lin. A simple provably secure key
exchange scheme based on the learning with errors problem. IACR
Cryptology ePrint Archive, 2012:688, 2012.

[19] L. Ducas. Accelerating BLISS: the geometry of ternary polynomi-
als. IACR Cryptology ePrint Archive, 2014:874, 2014.

[20] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice
signatures and bimodal gaussians. In R. Canetti and J. A. Garay,
editors, CRYPTO, volume 8042 of LNCS, pages 40–56. Springer,
2013.

[21] L. Ducas and T. Lepoint. A proof-of-concept implementation of
BLISS. Available at http://bliss.di.ens.fr.

[22] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé. CRYSTALS - Dilithium: Digital signatures from module
lattices. IACR Cryptology ePrint Archive, 2017:633, 2017.

[23] L. Ducas, V. Lyubashevsky, and T. Prest. Efficient identity-based
encryption over NTRU lattices. In P. Sarkar and T. Iwata, editors,
ASIACRYPT, volume 8874 of LNCS, pages 22–41. Springer, 2014.

[24] L. Ducas and P. Q. Nguyen. Learning a zonotope and more:
Cryptanalysis of NTRUSign countermeasures. In X. Wang and
K. Sako, editors, ASIACRYPT, volume 7658 of LNCS, pages 433–
450. Springer, 2012.

[25] T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi. Loop-abort
faults on lattice-based Fiat–Shamir and hash-and-sign signatures.
In R. Avanzi and H. M. Heys, editors, SAC, volume 10532 of LNCS,
pages 140–158. Springer, 2016.

[26] T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi. Side-channel
attacks on BLISS lattice-based signatures. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS, pages 1857–
1874. ACM, 2017.

[27] A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In A. M. Odlyzko, editor,
CRYPTO, volume 263 of LNCS, pages 186–194. Springer, 1986.

[28] F. Fontein and P. Wocjan. On the probability of generating a lattice.
Journal of Symbolic Computation, 64:3–15, 2014.

[29] P. Fouque, N. Guillermin, D. Leresteux, M. Tibouchi, and J. Za-
palowicz. Attacking RSA-CRT signatures with faults on Mont-
gomery multiplication. J. Cryptographic Engineering, 3(1):59–72,
2013.

[30] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon:
Fast-Fourier lattice-based compact signatures over NTRU. Speci-

14

http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://bliss.di.ens.fr

fications v1.0, 2017. Available at https://falcon-sign.info/falcon.
pdf.

[31] A. Gélin and B. Wesolowski. Loop-abort faults on supersingu-
lar isogeny cryptosystems. In T. Lange and T. Takagi, editors,
PQCrypto, volume 10346 of LNCS, pages 93–106. Springer, 2017.

[32] C. Gentry, J. Jonsson, J. Stern, and M. Szydlo. Cryptanalysis of the
NTRU signature scheme (NSS) from Eurocrypt 2001. In C. Boyd,
editor, ASIACRYPT, volume 2248 of LNCS, pages 1–20. Springer,
2001.

[33] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In C. Dwork, editor,
STOC, pages 197–206. ACM, 2008.

[34] C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU
signature scheme. In L. R. Knudsen, editor, EUROCRYPT, volume
2332 of LNCS, pages 299–320. Springer, 2002.

[35] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosys-
tems from lattice reduction problems. In B. S. Kaliski, Jr., editor,
CRYPTO, volume 1294 of LNCS, pages 112–131. Springer, 1997.

[36] L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush,
Gauss, and reload - A cache attack on the BLISS lattice-based
signature scheme. In B. Gierlichs and A. Y. Poschmann, editors,
CHES, volume 9813 of LNCS, pages 323–345. Springer, 2016.

[37] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded
systems. In E. Prouff and P. Schaumont, editors, CHES, volume
7428 of LNCS, pages 530–547. Springer, 2012.

[38] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and
W. Whyte. NTRUSign: Digital signatures using the NTRU lattice.
In M. Joye, editor, CT-RSA, volume 2612 of LNCS, pages 122–140.
Springer, 2003.

[39] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and
W. Whyte. Practical signatures from the partial Fourier recovery
problem. In I. Boureanu, P. Owesarski, and S. Vaudenay, editors,
ACNS, volume 8479 of LNCS, pages 476–493. Springer, 2014.

[40] J. Howe, T. Pöppelmann, M. O’Neill, E. O’Sullivan, and
T. Güneysu. Practical lattice-based digital signature schemes.
ACM Trans. Embedded Comput. Syst., 14(3):41, 2015.

[41] A. A. Kamal and A. M. Youssef. Fault analysis of the NTRUSign
digital signature scheme. Cryptography and Communications,
4(2):131–144, 2012.

[42] V. Lyubashevsky. Fiat–Shamir with aborts: Applications to lattice
and factoring-based signatures. In M. Matsui, editor, ASIACRYPT,
volume 5912 of LNCS, pages 598–616. Springer, 2009.

[43] V. Lyubashevsky. Lattice signatures without trapdoors. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT, volume
7237 of LNCS, pages 738–755. Springer, 2012.

[44] V. Lyubashevsky and D. Micciancio. Generalized compact knap-
sacks are collision resistant. In M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, editors, ICALP, volume 4052 of LNCS, pages 144–
155. Springer, 2006.

[45] V. Lyubashevsky and D. Micciancio. Asymptotically efficient
lattice-based digital signatures. In R. Canetti, editor, TCC, volume
4948 of LNCS, pages 37–54. Springer, 2008.

[46] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and
learning with errors over rings. J. ACM, 60(6):43, 2013.

[47] G. Maze, J. Rosenthal, and U. Wagner. Natural density of rectangu-
lar unimodular integer matrices. Linear Algebra and its Applications,
434(5):1319–1324, 2011.

[48] C. A. Melchor, X. Boyen, J. Deneuville, and P. Gaborit. Sealing the
leak on classical NTRU signatures. In M. Mosca, editor, PQCrypto,
volume 8772 of LNCS, pages 1–21. Springer, 2014.

[49] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In D. Pointcheval and T. Johansson, editors,
EUROCRYPT, volume 7237 of LNCS, pages 700–718. Springer,
2012.

[50] D. Naccache, P. Q. Nguyen, M. Tunstall, and C. Whelan. Experi-
menting with faults, lattices and the DSA. In S. Vaudenay, editor,
PKC, volume 3386 of LNCS, pages 16–28. Springer, 2005.

[51] National Security Agency. Commercial national security
algorithm suite and quantum computing FAQ. Technical report,
Jan. 2016. Available at https://www.iad.gov/iad/library/ia-
guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-
suite-and-quantum-computing-faq.cfm.

[52] P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanal-
ysis of GGH and NTRU signatures. J. Cryptology, 22(2):139–160,
2009.

[53] C. O’Flynn and Z. D. Chen. ChipWhisperer: An open-source
platform for hardware embedded security research. In E. Prouff,
editor, COSADE, volume 8622 of LNCS, pages 243–260. Springer,
2014.

[54] S. Ordas, L. Guillaume-Sage, K. Tobich, J. Dutertre, and P. Mau-
rine. Evidence of a larger EM-induced fault model. In M. Joye and
A. Moradi, editors, CARDIS, volume 8968 of LNCS, pages 245–259.
Springer, 2014.

[55] D. Page and F. Vercauteren. A fault attack on pairing-based
cryptography. IEEE Trans. Computers, 55(9):1075–1080, 2006.

[56] C. Patrick, B. Yuce, N. F. Ghalaty, and P. Schaumont. Lightweight
fault attack resistance in software using intra-instruction redun-
dancy. In R. Avanzi and H. M. Heys, editors, SAC, volume 10532
of LNCS, pages 231–244. Springer, 2016.

[57] C. Peikert. Lattice cryptography for the internet. In M. Mosca,
editor, PQCrypto 2014, volume 8772 of LNCS, pages 197–219.
Springer, 2014.

[58] C. Peikert. A decade of lattice cryptography. Cryptology ePrint
Archive, Report 2015/939, 2015. http://eprint.iacr.org/.

[59] C. Peikert and A. Rosen. Efficient collision-resistant hashing
from worst-case assumptions on cyclic lattices. In S. Halevi and
T. Rabin, editors, TCC, volume 3876 of LNCS, pages 145–166.
Springer, 2006.

[60] P. Pessl, L. Groot Bruinderink, and Y. Yarom. To BLISS-B or not
to be: Attacking strongSwan’s implementation of post-quantum
signatures. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS, pages 1843–1855. ACM, 2017.

[61] D. Pointcheval and J. Stern. Security proofs for signature schemes.
In U. M. Maurer, editor, EUROCRYPT, volume 1070 of LNCS,
pages 387–398. Springer, 1996.

[62] T. Pöppelmann, L. Ducas, and T. Güneysu. Enhanced lattice-
based signatures on reconfigurable hardware. In L. Batina and
M. Robshaw, editors, CHES, volume 8731 of LNCS, pages 353–370.
Springer, 2014.

[63] T. Prest. Implementation of the GPV-based scheme of Ducas et al.
Available at https://github.com/tprest/Lattice-IBE.

[64] L. Rivière, Z. Najm, P. Rauzy, J. Danger, J. Bringer, and L. Sauvage.
High precision fault injections on the instruction cache of ARMv7-
M architectures. In W. H. Robinson, M. Potkonjak, and S. Bhunia,
editors, HOST, pages 62–67. IEEE Computer Society, 2015.

[65] W. Stein et al. Sage Mathematics Software (Version 7.0), 2016.
Available at http://www.sagemath.org.

[66] M. Taha and T. Eisenbarth. Implementation attacks on post-
quantum cryptographic schemes. In E. A. Aleisa, editor, ICACC.
IEEE Social Implications of Technology Society, 2015.

Thomas Espitau is an alumnus of École nor-
male supérieure de Cachan (Cachan, France)
and is currently a second-year Ph.D. student
in computer science at UPMC under the joint
supervision of Antoine Joux and Pierre-Alain
Fouque. One of his main research topics is
lattice-based cryptography and the analysis of
lattice reduction algorithms.

Pierre-Alain Fouque obtained his Ph.D. in com-
puter science from University Paris VII under
Jacques Stern in 2001. He then served as As-
sistant Professor in the computer science de-
partment of École normale supérieure (Paris,
France) from 2003 before moving to the Univer-
sity of Rennes I (Rennes, France) as in 2012.
He is now Full Professor of computer science at
Rennes I and the Institut universitaire de France.
His research interests cover all aspects of crypt-
analysis and security in general.

15

https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://eprint.iacr.org/
https://github.com/tprest/Lattice-IBE
http://www.sagemath.org

Benoı̂t Gérard obtained his Ph.D. in computer
science from INRIA Rocquencourt under the su-
pervision of Jean-Pierre Tillich in 2010. He then
joined the UCL CryptoGroup (Louvain, Belgium)
as a postdoctoral researcher before taking his
current research position at DGA.MI (Rennes,
France), part of the French defense ministry. He
is an expert of side-channel analysis and physi-
cal attacks.

Mehdi Tibouchi obtained his Ph.D. in computer
science from University Paris VII and the Univer-
sity of Luxembourg in 2011 after doctoral stud-
ies at École normale supérieure (Paris, France)
under the supervision of David Naccache and
Jean-Sébastien Coron. He then joined NTT Cor-
poration (Tokyo, Japan), where he has been car-
rying out research in cryptology ever since. His
research interests cover several mathematical
aspects of public-key cryptography and crypt-
analysis.

APPENDIX

In [43], Lyubashevsky describes a signature scheme proved
secure in the random-oracle model which is an alternative to
hash-and-sign methodology of Gentry et al. in [33]. Gentry,
Peikert, and Vaikuntanathan were the first to propose a
signature scheme whose security is based on the hard-
ness of worst-case lattice problems, while Lyubashevsky
and Micciancio present a one-time signature scheme based
on the hardness of worst-case ideal lattice problems [45].
Lyubashevsky propose a Fiat–Shamir framework [27] using
rejection sampling technique in [42]. Both signature schemes
are inefficient in practice: [33] requires megabytes long sig-
nature and [42] needs 60,000 bits for reasonable parameters.

Many previous lattice-based signature schemes have
been broken since information about the secret key leaks in
every signature [24], [32], [34], [52]. Consequently, the basic
idea of the Lyubashevsky and BLISS signature schemes is to
use the rejection sampling so that the distribution output
is independent of the secret key. This signature scheme
is proved secure on the hardness of the ring version of
`2 − SISq,n,m,β .

In the Figure 7, we describe the version of Güneysu et
al. in [37] which is a particular instantiation of the ring
version of Lyubashevsky signature as presented in [43, §7].
We denote by Rq,k the subset of Rq that consists of all
polynomials with integer coefficients in the interval [−k; k].
The hardness assumption of [37] is that (a, t) ∈ Rq × Rq
where a is chosen uniformly inRq and t = as1 + s2 with s1

and s2 uniformly chosen in Rq,k is indistinguishable from
(a, t) uniformly chosen in Rq × Rq . When

√
q < k, the

solution (s1, s2) is not unique and finding one of them is
as hard as worst-case lattice problems in ideal lattices [44],
[59]. In [46], it was shown that if si are chosen according
to a Gaussian distribution instead of a uniform one, then
recovering the si given (a, t) is as hard as solving worst-
case lattice problems using a quantum computer. In the
following our attacks do not take into account the way the
secret key is generated and work in all cases.

.1 Description of the PASSSign signature scheme

PASSSign is a signature scheme introduced by Hoffstein et
al. in [39]. This scheme is a variant of the PASS and PASS-
2 scheme from the same authors, adding the rejection sam-
pling technique of Lyubashevsky from 2009. Its hardness is
based on the problem of recovering a ring element with
small norm from an incomplete description of its Chinese
Remainder representation.

We follow in its description the original presentation
and notation of [39]. Computations are made in the ring
Zq[x]/(xN − 1). On that ring, we define B∞q the subset
of polynomials whose coefficients lie in [−k, k]. Given g a
primitiveN−th root of unity in Zq , Ω a subset of {gi|1 ≤ i ≤
N −1}, we define the mapping FΩ : Zq[x]/(xN −1)→ Z|Ω|q
consisting in the multi-evaluation of a polynomial on the
elements of Ω. The image of a polynomial f by FΩ will
be simply denoted by f |Ω. The function FormatC maps the
set of bit strings output by the Hash function H into a set
of sparse polynomials. Once again, since its details are not
mandatory when mounting the attack, we let the interested
reader refer to the original paper for an in-depth description.
Its full description is given in Figure 8.

.2 Description of the TESLA signature scheme

The TESLA scheme is a variant of the BG scheme presented
in [5], initially modified by Dagdelen et al. in [16] to get rid
of the forking lemma in the security analysis.

Contrary to the two previous presented schemes, the
TESLA signatures works directly on vectors, and no longer
on the additional algebraic structure provided by the use of
polynomials. The matrix A used in the scheme is publicly
known and can be seen as a global constant shared by
arbitrary many users. The CheckE function is fully described
in the original paper from Dagdelen et al. [16] and ensures
mandatory properties to preserves that the signature re-
mains short. Once again, we do not fully describe it here
since its details are irrelevant for our attacks. We conclude
this presentation by noting that the security proof uses the
hardness of the LWE problem. Its specificity is to avoid the
use of the forking lemma [61] used in the proof of most
Fiat–Shamir type signature schemes.

More precisely, we are interested in its variant Ring-
TESLA, presented in [1], which offers a provably secure
instantiation. Its full description is given in Figure 9.

In this section, we precise a bit more why the attack
described on BLISS apply almost straightly to the other
members of the Fiat–Shamir family described above: GLP,
PASSSign, and Ring-TESLA.

.3 On Lyubashevsky Scheme

The difference with BLISS lies in the rejection sampling used
and in the generation of the y1,y2 commitment coefficients.
Thus there is no difference in the way of mounting the
attack: here again, only a single fault is only needed to early-
abort the generation loop of the element y1 and force its
degree to be low.

16

1: function SIGN(µ,a, s1, s2)
2: y1,y2 ← Rq,k
3: c = H(ay1 + y2, µ)
4: z1 = s1c + y1, z2 = s2c + y2

5: If z1 or z2 6∈ Rq,k−32, goto 1
6: return (z1, z2, c)
7: end function

1: function VERIFY(µ, z1, z2, c,a, t)
2: Accept iff z1 and z2 ∈ Rq,k−32 and c = H(az1 + z2 − tc, µ)
3: end function

Fig. 7. Lyubashevsky or [37] signature scheme based on Ring `2 − SISq,n,m,β . The signing key are s1, s2 ∈ Rq,1 where each coefficient of every
si is chosen uniformly and independently from {−1, 0, 1} The verification key is (a, t) where a ← Rq and t = as1 + s2 The random oracle is
modeled by H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}n, ‖v‖1 ≤ κ} with κ = 32 Two sets of parameters for (n, q, k) are given for estimated security of 100
and 256 bits: Set I (512, 8383489, 214) for a 8,950-bit signature, 1620-bit secret key and 11800-bit public key and Set II (1024, 16760833, 215) for a
18800-bit signature, 3250-bit secret key and 25000-bit public key.

1: function SIGN(µ, f)
2: y← B∞k
3: h = H(y|Ω, µ)
4: c = FormatC(h)
5: z = y + f · c
6: If z 6∈ B∞k−b, goto 1
7: return (c, z, µ)
8: end function

1: function VERIFY(µ, c, z, c, f |Ω)
2: Accept iff z2 ∈ B∞k−b and c = FormatC(H(z|Ω − f · c|Ω, µ))
3: end function

Fig. 8. Description of the PASSSign signature. The public parameters are: g a primitive N− th root of unity in Zq , Ω a subset of {gi|1 ≤ i ≤ N−1},
t its cardinal, k the infinity norm of noise polynomials, and b the 1-norm of challenge polynomials. The signing key is the secret f ∈ Zq [X]/(Xn−1)
of small norm, that is of L∞ norm equal to 1. Authors recommend the simple strategy of choosing each coefficient independently and uniformly
from 1, 0, 1. The vector t is defined as as1 + s2 The random oracle is modeled by H : Ztq × {0, 1}∗ → {0, 1}l. Two sets of parameters for (n, q, k)
are given for estimated security of 100 and 128 bits: Set I (769, 1047379, 215 − 1) for a 12624-bit signature, 1600-bit secret key and 7720-bit public
key and Set II (1152, 968521, 215 − 1) for a 18800-bit signature, 2000-bit secret key and 12000-bit public key.

1: function SIGN(µ,a1,a2, sk =
(s, e1, e2))

2: y←$ [−B;B]n

3: v1 = a1y mod q
4: v2 = a2y mod q
5: c← H(bv1ed, bv2ed, µ)
6: c← F (c)
7: z← y + sc
8: w1 ← v1 − e1c mod q
9: w2 ← v2 − e2c mod q

10: If If |[wi]2d | > 2d−1 − L or
‖z‖∞ > B − U then Restart.

11: return (z, c)
12: end function

1: function KEYGEN()
2: s, e1, e2 ← Dn

σ

3: If not CheckE(ei) then Restart
4: return (pk = (t1, t2), sk = (s, e1, e2)) where ti = ais + ei mod q
5: end function

1: function VERIFY(µ,a1,a2, (z1, z
†
2, c), pk = (t1, t2))

2: c← F (c)
3: w′1 ← a1z− t1c mod q
4: w′2 ← a2z− t2c mod q
5: c′ ← H(bw′1ed, bw′2ed, µ) Accept iff c′ = c and ‖z‖∞ ≤ B − U
6: end function

Fig. 9. Description of the Ring-TESLA Signature Scheme. The public parameters are a1,a2 ∈ Znq , n ∈ Z. The scheme uses an encoding function:
F : {0, 1}κ → Bn,ω , the space of vectors length n and weight ω. The random oracle is modeled by H : {0, 1}∗ → {0, 1}κ. A set of parameters are
proposed with security level at least 128 bits. The interesting parameters for us are: κ = 128, n = 512, q = 39960577, σ = 52, U = 3173, d = 23,
ω = 19, L = 2766 and B = 222 − 1. The resulting signature size around 1,488B, secret key size around 1,920B and public key size of 3,328B.
From the point of view of the attack mounted, we are not interested in the CheckE function and we will not detail it here.

17

.4 On Ring-TESLA

In Ring-TESLA, the situation is slightly different since only
one element y is generated, whose coefficients are drawn
uniformly in [−B;B]. Yet, the same early-abort in its gen-
eration can be performed to force its degree to be low. Let
us suppose that its degree is m − 1; that is, the generation
loop has been stopped after m iterations. Then, once again
with high probability ≈ (1− 1/q)n the element c output in
signature is invertible and the following equality holds:

c−1z− s ≡ c−1y ≡
m−1∑
i=0

yic
−1xi (mod q) (8)

where y =
∑m−1
i=0 yix

i. We can now perform the same trick
as in §3.

The analysis yields this time that:

`+ 1 &
m+ 1 + log σ

log q

1− log(σ
√

2πe)

log q

.

Then, as in §3, to complete the attack, it suffices to apply the
above to a family of subsets J of {0, . . . , n − 1} covering
the whole set of indices, which reveals the entire vector s.
Recovering the remaining components of the secret key is
now a straightforward modular inversion using the public
parameters a1,a2.

.5 On PASSSign

Like in the Ring-TESLA scheme only one y is generated
when signing and the same attack can be mounted against
the generation of this last vector. With regards to the
methodology used, the only difference which appears when
following the analysis lies in the norm of the secret key f :
in PASSSign, the secret key is a polynomial of coefficients
independently drawn from {−1, 0, 1}. As such, if using the
same notations as before, we get a vector ϕI(s) of norm

roughly equals to
√

2`
3 +B2. We then choose B = 1, which

leads to the following inequality on `:

`+ 1 &
m+ 1

1− log 2·
√

(πe3)

log q

.

Then, to complete the attack, it suffices to apply the same
method to a family of subsets J of {0, . . . , n − 1} covering
the whole set of indices, which reveals the entire secret f .

.6 Description of the Kyber scheme

Kyber is a key-encapsulation mechanism (KEM), introduced
in [12], based on hardness assumptions over module lat-
tices and constructed as a variant of the Fujisaki–Okamoto
transform to create a CCA-secure KEM from a CCA-secure
encryption scheme. The security of this primitive is based
on the hardness of Module-LWE. By consistency with the
presentation of our other results, we expose an attack on
the key exchange protocol deriving from the KEM. Like
in Frodo and NewHope scheme, the shared commitment
vectors are of the shape A · s + e, but with the difference
that A (resp. e, s) is no longer an integral matrix nor a ring
element but rather a matrix of ring elements (resp. vectors

of ring elements). The full outline of the Kyber8 protocol is
given in Figure 10.

.7 Attacking the key exchange
The problem of recovering the secret vector s for the
commitment As + e with a tampered e can be seen as
a multidimensional analog of the problem tackled when
attacking the BLISS signature or the Frodo key exchange.
Hence, one can naturally try to generalize the approach
presented in §3 or in §5. Let then suppose that each of
the coefficients ei of the vector e generated by Alice has
its degree bounded by m− 1. Once again, suppose that the
matrix A is invertible in Rk×kq ; this happens with very high
probability: if we heuristically assume that A behaves like a
matrix of random elements of the ring from that standpoint,
we expect its invertibility to occur with probability about∏k
i=1 1− q−in, which is almost greater than 99.9% for the

proposed parameters of the scheme. Then (left-)multiplying
by A−1 in the the relation b = As+e and taking its i-th line
yields an equation of the form:

[A−1]ib = [A−1]ie + [s]i mod q

in Rq , where [X]i denotes the i-th line of the matrix (resp.
vector) X . Remark now that the element [A−1]ie is a Rq
linear combination of the n coefficients of e:

[A−1]ie =
k∑
j=1

[A−1]i,jej

=
k∑
j=1

(
m−1∑
u=0

[A−1]i,je
(u)
j Xu

)

=
m−1∑
u=0

 k∑
j=1

[A−1]i,je
(u)
j

Xu

︸ ︷︷ ︸
∈SpanZ([A−1]i,1Xu,...,[A−1]i,kXu)

∈ SpanZ

((
[A−1]i,jX

u
)
u,j

)
Therefore, the vector v = a−1b is close to the sublattice
L of Zn generated by the elements

(
[A−1]i,jX

u
)
u,j

mod q
for j = 0, . . . ,m − 1 and u = 1, . . . , k, and qZn. Then the
difference between L and [A−1]ib should be precisely the
i− th line of s. The methodology of §3 and §5 applies here:
one reduce the CVP problem in dimension n to multiple
instances of SVP on lattices of rank `; the analysis gives
the following condition on the rank of the aformentioned
sublattices:

`+ 1 &
km+ 1 +

log
√
η/2

log q

1− log
√
η/2
√

2πe

log q

. (9)

The denominator of the right-hand side of (9) is roughly
about 0.82 for the paranoid parameters and 0.85 for the light
parameters. We thus expect to recover the projections of the
lines of s if we can solve the shortest vector problem in a
lattice of rank slightly larger than 1.2 · km. To satisfy the

8. As mentioned in the Kyber paper [12], the original cryptosystems
did not include the “bit-dropping” function Compressq in key gener-
ation and encryption, but this idea is considered folklore. We present
here the version without compression for the sake of simplicity, but it
does not change the way the attack is mounted.

18

Alice Bob

seed, seed1 ←$ U({0, 1}s)
A← Sam(seed1) m← U({0, 1}s)

s, e← βkη × βkη = Sam(seed) A← Sam(seed1)

b← A · s + e
(t, seed1)
−−−−−−−→ (K̃, r, d)← Hash(t, seed1,m)

s′, e′, e′′ ← βkq × βkq × βq = Sam(r)

b′ ← AT · s′ + e′

v′ ← tT · s′ + e′′ + dq/2cm

m′ ← bv′ − sTue
(b′, v′)
←−−−−− K ← Hash(K̃,b′, v′, d)

e′, e′′ ←$ βkq × βq = Sam(r′)

(K̃ ′, r, d)← Hash(u, seed1,m)

b← AT · s′ + e′

v← tT · s′ + e′′ + dq/2cm′

if (u, v, d) = (u, v, d) then K ← Hash(K̃, c)

else K ← Hash(z, c)

Fig. 10. Description of the Kyber scheme with parameters (n, q, χ), and The matrix A ∈ Rk×kq is generated from seed via a pseudo-random
function SAM. For the parameters described in 10, n = 256, q = 7681, k = 2 (light parameters) or k = 4 (paranoid parameters). The random ring
elements are drawn such that each of their coefficients follows a centered binomial law βη of parameter η = 3 (paranoid) or η = 5 (light). Sam is an
extendable output function, that is a function on bit strings in which the output can be extended to any desired length.

hypothesis made on the error vector e, namely that each
of its coefficients has their degree uniformly bounded by a
constant m � n, two possibilities occur depending on the
generation procedure of this vector. One the one hand, if e
is drawn coefficient by coefficient, then one must perform a
fault on each of the drawings, that is either 2 or 4 faults in a
row. The constantm is, in this case, the maximum of the loop
iterations performed before the faults. On the other hand, if
the vector is generated degree by degree, a single fault is
necessary: performing an early abort on the signature yields
directly the desired property.

The estimation of the success probability of the attack
on GPV was lower bounded by the probability that m + k
random vectors V = v1, . . . , vm+k of Zm generates the full
lattice and not a strict full rank sublattice. However, a careful
analysis shows that we only need one of the basis vectors
of Zm (that is, an integral vector of norm 1) to belong to the
sublattice SpanZ(V).

Although a complete and formal mathematical analysis
of such a probability is beyond the scope of this article, an
experimental approach is nonetheless possible and interest-
ing. As such extensive experiments were conducted to ob-
tain a numerical estimation of this probability. The sampled
vectors V = v1, . . . , vm+k are drawn uniformly at random
into a parallelepiped of norm B, for an increasing constant
B. Then a basis of the corresponding sublattice is found by
computing a Hermite Normal Form of the generating set V .
This form allows a polynomial-time membership test for the
n vectors of the canonical basis of Zm. For m + 1 vectors, a
vector of norm 1 is present in the lattice with probability of
about 96%. For m + 2 this probability is greater than 99%
and as soon as k gets greater than 3, every lattice sampled
in such a way contained at least one of the desired vector.

These results corroborate the simulations conducted on
the mounting of the attack presented in §4.2.

As we mentioned in §8.2, our fault experiments against
NewHope compiled on an XMEGA microcontroller was car-
ried out with clock glitches of width 2.5% of a period, and
offset −5.5%. We then used those parameters to pinpoint
the clock cycles at which to insert those glitches.

Once the correct clock cycles to cause loop aborts are
found, one can re-examine the choice of glitch parameters
and check the range of parameters for which reliable faults
can be obtained. It turns out that this range is quite large!
On Fig. 11, we show the result of glitches of width varying
from 0 to 10% of a period and offset varying from −8% to
8%. Roughly one third of this parameter range results in
successful attacks.

1 from sage.stats.distributions.
discrete_gaussian_integer \

import
DiscreteGaussianDistributionIntegerSampler

3

#BLISS-II parameters
5 q=12289
n=512

7

(delta1,delta2)=(0.3,0)
9 sigma=10
kappa=23

11

R.<xx>=QuotientRing(ZZ[x], ZZ[x].ideal(xˆn+1))
13 Rq.<xxx>=QuotientRing(GF(q)[x], GF(q)[x].ideal(xˆ

n+1))

15 sampler =
DiscreteGaussianDistributionIntegerSampler(
sigma=sigma, algorithm=’uniform+table’)

17 def s1gen():
s1vec=[0]*n

19

Fig. 11. Results of faults with glitches of various parameters. Green
bullets denote success, grey bullets denote failure (no early loop abort)
and red bullets denote device malfunction (reset, freeze, memory dump,
etc.).

Glitch Map

0 102 4 6 81 3 5 7 9

Glitch width

0

-8

-6

-4

-2

2

4

6

8

G
lit

ch
 o

ff
se

t

19 d1=ceil(delta1*n)
d2=ceil(delta2*n)

21

while d1>0:
23 i=randint(0,n-1)

if s1vec[i]==0:
25 s1vec[i]=(-1)ˆrandint(0,1)

d1-=1
27

while d2>0:
29 i=randint(0,n-1)

if s1vec[i]==0:
31 s1vec[i]=2*(-1)ˆrandint(0,1)

d2-=1
33

return sum([s1vec[i]*xxˆi for i in range(n)])
35

37 def faultyz1gen(s1,d):
y1=sum([sampler()*xxˆi for i in range(d)])

39

#c is a random binary polynomial of weight
kappa

41 dc=kappa
cvec=[0]*n

43 while dc>0:
i=randint(0,n-1)

45 if cvec[i]==0:
cvec[i]=1

47 dc-=1

49 c=sum([cvec[i]*xxˆi for i in range(n)])
z1=y1+c*s1

51

return (c,z1)

53

def faultattack(d,e,bkz_size=25):
55 s1=s1gen()

(c,z1)=faultyz1gen(s1,d)
57

try:
59 cinv=1/Rq(c.lift())

except ZeroDivisionError:
61 print "c not invertible"

return s1,c,z1,matrix(ZZ,[])
63

"""
65 Try to recover the first e coefficients of s1

(of course, if we succeed, we should succeed
for *all* sets of

67 e coefficients of s1, so we can recover the
whole secret key).
"""

69 print "Starting attack"

71 t=cputime(subprocesses=True)

73 latvec=[(cinv*xxxˆi).lift().list()[:e] for i
in range(d)]
latvec=[(cinv*Rq(z1.lift())).lift().list()[:e
]] + latvec

75 latvec=latvec+[[0]*i + [q] + [0]*(e-i-1) for
i in range(e)]

77 M=matrix(ZZ,latvec)
M=M.augment(matrix(ZZ,e+d+1,1,[2*q]+[0]*(e+d)
))

79 if bkz_size is None:
M=M.LLL()

81 else:
M=M.BKZ(block_size=bkz_size)

83 v=M[d+e]
v=v*(2*q/v[-1])

85

print "Attack time:", cputime(subprocesses=
True)-t

87 print "Recovered vector:", v[:-1]
print "Truncated key:", s1.lift().list()[:e]

89

return s1,c,z1,M
91

def faultattack_multiple(d,e,bkz_size=None,tries
=100):

93 succ=0
secs=0.0

95 for _ in range(tries):
s1=s1gen()

97

while True:
99 (c,z1)=faultyz1gen(s1,d)

try:
101 cinv=1/Rq(c.lift())

except ZeroDivisionError:
103 print "*",

sys.stdout.flush()
105 continue

break
107

t=cputime(subprocesses=True)
109

latvec=[(cinv*xxxˆi).lift().list()[:e]
for i in range(d)]

111 latvec=[(cinv*Rq(z1.lift())).lift().list
()[:e]] + latvec

latvec=latvec+[[0]*i + [q] + [0]*(e-i-1)
for i in range(e)]

113

M=matrix(ZZ,latvec)
115 M=M.augment(matrix(ZZ,e+d+1,1,[2*q]+[0]*(

e+d)))
if bkz_size is None:

117 M=M.LLL()

20

else:
119 M=M.BKZ(block_size=bkz_size)

v=M[d+e]
121 v=v*(2*q/v[-1])

123 t=cputime(subprocesses=True)-t
secs+=float(t)

125 if v[:-1].list()==s1.lift().list()[:e]:
succ+=1

127 print "+",
else:

129 print ".",
sys.stdout.flush()

131

print
133 print "Success: %d/%d (%f%%)" % (succ,tries

,100*RR(succ/tries))
print "Avg CPU time:", secs/tries

135 print "Avg CPU time (total vec):", secs/tries
*ceil(n/e*tries/succ)

137 def theoretical_lattice_size(d):
r=delta1+4*delta2

139 u=0.5*log(r)/log(q)
v=0.5*log(2*pi*exp(1)*r)/log(q)

141 return RR(((d+1+u)/(1-v))-1)

143 # vim: ft=python

Listing 1. Attack on BLISS scheme

1 from sage.stats.distributions.
discrete_gaussian_integer \

import
DiscreteGaussianDistributionIntegerSampler

3 from sage.stats.distributions.
discrete_gaussian_polynomial \

import
DiscreteGaussianDistributionPolynomialSampler

5

q=1021
7 n=256
sigmaf=1.17*sqrt(q/(2*n))

9 sigma=1.17*sqrt(q)

11 x=polygen(ZZ)
R.<xx>=QuotientRing(ZZ[x], ZZ[x].ideal(xˆn+1))

13 Rq.<xxx>=QuotientRing(Integers(q)[x], Integers(q)
[x].ideal(xˆn+1))

15 K=QuotientRing(QQ[x], QQ[x].ideal(xˆn+1))

17 def norml2(l):
return sqrt(sum([RR(x)ˆ2 for x in l]))

19

def anticirculant(f):
21 return Matrix(ZZ, [(xxˆi*f).list() for i in

range(n)])

23 def gpvkeygen():
fsampler =
DiscreteGaussianDistributionPolynomialSampler
(R,n,sigmaf)

25 while True:
f,g = fsampler(), fsampler()

27

fbar = K(f.lift().subs(-xxˆ255))
29 gbar = K(g.lift().subs(-xxˆ255))

31 f2 = q*fbar / (f*fbar + g*gbar)
g2 = q*gbar / (f*fbar + g*gbar)

33

norm = max(norml2(f.list() + g.list()), \
35 norml2(f2.list() + g2.list()))

37 if norm > sigma:
continue

39

Rf, rhof, _ = xgcd(f.lift(), xˆn+1)
41 Rg, rhog, _ = xgcd(g.lift(), xˆn+1)

gg, u, v = xgcd(Rf, Rg)
43

if gg == 1 and gcd(Rf,q) == 1:
45 break

47 F = q*v*rhog
G =-q*u*rhof

49

while True:
51 k = (F*fbar + G*gbar) / (f*fbar + g*gbar)

kl= [floor(c+0.5) for c in k.list()]
53 k = sum([kl[i]*xxˆi for i in range(len(

kl))])

55 if k.lift().degree() < 0:
break

57

F-= k*f
59 G-= k*g

61 h = Rq(g)/Rq(f)

63 B = block_matrix([[anticirculant(g),
anticirculant(-f)], \

[anticirculant(G),
anticirculant(-F)]])

65 return h,f,g,F,G,B

67 def lowerkey(f,g):
Rf, rhof, _ = xgcd(f.lift(), xˆn+1)

69 Rg, rhog, _ = xgcd(g.lift(), xˆn+1)
gg, u, v = xgcd(Rf, Rg)

71

if gg != 1 or gcd(Rf,q) != 1:
73 raise ValueError, "not coprime"

75 F = q*v*rhog
G =-q*u*rhof

77

fbar = K(f.lift().subs(-xxˆ(n-1)))
79 gbar = K(g.lift().subs(-xxˆ(n-1)))

81 while True:
k = (F*fbar + G*gbar) / (f*fbar + g*gbar)

83 kl= [floor(c+0.5) for c in k.list()]
k = sum([kl[i]*xxˆi for i in range(len(

kl))])
85

if k.lift().degree() < 0:
87 break

89 F-= k*f
G-= k*g

91

return F,G
93

95 def rndvec(v):
return [x if 2*x<q else x-q for x in v]

97

def gpvsign(B, fault=2*n, verbose=False, m=None):
99 if m is None:

t = Rq.random_element()
101 else:

t = m # assume m is a hash value in Rq
103

Bgram, T = B.change_ring(RDF).gram_schmidt()
105 Bgram = matrix(RDF, [T[i,i]*Bgram.row(i) for

i in range(2*n)])

107 v = vector(ZZ,2*n)
c = vector(ZZ,2*n, rndvec(t.lift().list()) +
[0]*n)

109

for i in range(2*n-1,2*n-1-fault,-1):

21

111 b = Bgram.row(i)
s = sigma/b.norm()

113 k = c.dot_product(b)/b.norm()ˆ2
z =

DiscreteGaussianDistributionIntegerSampler(
sigma=s,c=k,\

115 algorithm="uniform+online")()

117 if verbose:
print z,RR(k),RR(c.norm()),b.norm(),

RR(c.norm())/b.norm()
119

c = c - z*B.row(i)
121 v = v + z*B.row(i)

123

return t, vector(ZZ,n,rndvec(t.lift().list())
)-v[:n], -v[n:] # (t,s1,s2)

125

def test_gpvfault(B,m,d,bkz=None):
127 """

Try to recover F from m faults with the
iterations stopping at d.

129 """
print "Computing the m=%d faulty signatures"
% m

131 sigs = [gpvsign(B,d)[2] for _ in range(m)]

133 if bkz is None:
print "Trying to reduce with LLL"

135 M = Matrix(ZZ,sigs).LLL()
else:

137 print "Trying to reduce with BKZ-%d" %
bkz

M = Matrix(ZZ,sigs).BKZ(block_size=bkz)
139

P = [sum([M[k,i]*xxˆi for i in range(n)]) for
k in range(m)]

141 F = sum([B[-1,n+i]*xxˆi for i in range(n)])
print "P_i/F =", [K(Pi)/K(F) for Pi in P]

143

zeta = filter(lambda x: x!=0, list(K(P[m-d])/
K(F)))

145 return zeta==[1] or zeta==[-1]

147

def test_gpvfault_multiple(B,m,d,bkz=None,tries
=100):

149 succ=0
secs=0.0

151 for _ in range(tries):
sigs = [gpvsign(B,d)[2] for _ in range(m)

]
153

t=cputime(subprocesses=True)
155 if bkz is None:

M = Matrix(ZZ,sigs).LLL()
157 else:

M = Matrix(ZZ,sigs).BKZ(block_size=
bkz)

159 t=cputime(subprocesses=True)-t
secs=secs+float(t)

161

P = [sum([M[k,i]*xxˆi for i in range(n)])
for k in range(m)]

163 F = sum([B[-1,n+i]*xxˆi for i in range(n)
])

165 zeta = filter(lambda x: x!=0, list(K(P[m-
d])/K(F)))

if zeta==[1] or zeta==[-1]:
167 succ+=1

print "+",
169 else:

print ".",
171 sys.stdout.flush()

173 print
print "Success: %d/%d (%f%%)" % (succ,tries
,100*RR(succ/tries))

175 print "Avg CPU time:", secs/tries

177

vim: ft=python

Listing 2. Attack on GPV scheme

22

	Introduction
	Lattice-based cryptography
	Implementations of lattice-based signatures
	Implementations of lattice-based key exchange
	Our contributions
	Related work
	Applicability to NIST-submitted variants of the target schemes

	Description of the lattice-based signature and key exchange schemes
	Notation
	Description of BLISS
	Description of the GPV-based scheme of DBLP:conf/asiacrypt/DucasLP14
	Description of NewHope
	Description of Frodo

	Attack on Fiat–Shamir type lattice-based signatures
	Attack on hash-and-sign type lattice-based signatures
	Description of the attack
	How many faults do we need?

	Attack on NewHope Key Exchange
	Attack on Frodo Key Exchange
	Column-wise generation
	Row-wise generation

	Feasibility of the faults
	Classical fault models
	Fault attacks on software implementations
	Fault attacks on hardware implementations

	Implementation of the faults
	Simulated faults on LEON3
	Concrete faults on XMEGA with ChipWhisperer

	Possible countermeasures
	Conclusion and outlook
	References
	Biographies
	Thomas Espitau
	Pierre-Alain Fouque
	Benoît Gérard
	Mehdi Tibouchi

	Appendix
	Description of the PASSSign signature scheme
	Description of the TESLA signature scheme
	On Lyubashevsky Scheme
	On Ring-TESLA
	On PASSSign
	Description of the Kyber scheme
	Attacking the key exchange

