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What is a signature ?

keygen signing verifying 

2 party protocol to verify the authenticity of a message  



What is a threshold signature ?

 out of  parties can collaborate to sign a message and  parties cannot sign.T N T − 1

𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

(T, N) = (3,6)

Signature 

Interactive protocol to distribute signature generation such that: 



Security requirements

𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

❖ Correctness: with at least -out-of-  partial signing keys, we can sign. 

❖  Unforgeability: remains unforgeable even if up to  parties are corrupted, where .

T N

T − 1 T′￼ ≤ T − 1





M P C

F H ET a i l o r e d



Family of techniques 

Thresholdization 
technique Signature size Speed Rounds Comm cost/party

MPC Small Slow 15

FHE Medium As fast as FHE 2

Tailored S—M Fast 2-4

≥ 1MB

20 kB

≥ 1MB

different designs choices, different pros/cons



What is the rationale of 
(tailored) threshold? 



secret sharing signing combining verifying 

requires corresponding public key



THRESHOLD SIGNATURE 

 SIGNATURE SCHEME

 KEY DISTRIBUTION / SHARING 

+

=



LF i a t - S h a m i r H a s h - a n d - S i g n
NIST standard (FN-DSA — “Falcon”)NIST standard (ML-DSA — “Dilithium”)



(flooded) Fiat-Shamir 101



Simple identification protocol
𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short  𝗏𝗄 = A ⋅ 𝗌𝗄 𝗌𝗄

 𝖢𝗈𝗆𝗆𝗂𝗍

• Sample a short  

•
r

w = A ⋅ r
𝖢𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

• Sample a short c
 𝖠𝗇𝗌𝗐𝖾𝗋

• z = c ⋅ 𝗌𝗄 + r
𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
w * = w
z

w

c

z

Pr
ov

er
Verifier

(all operations are mod q)
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Fiat-Shamir on lattices
𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short  𝗏𝗄 = A ⋅ 𝗌𝗄 𝗌𝗄

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r

w = A ⋅ r

•  c = Hash(m, w)

• z = c ⋅ 𝗌𝗄 + r

𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
c = Hash(m, w*)
z

• Output  c, z

(all operations are mod q)



What about hardness ?
𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short  𝗏𝗄 = A ⋅ 𝗌𝗄 𝗌𝗄

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r

w = A ⋅ r

•  c = Hash(m, w)

• z = c ⋅ 𝗌𝗄 + r

𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
c = Hash(m, w*)
z

• Output  c, z

(all operations are mod q)

Short integer solution (SIS)

Short integer solution (SIS)

Hint-LWE

Short integer solution (SIS)
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How to share a secret? 



Introducing Shamir Secret Sharing

 out of  parties can collaborate to recover a message and  parties cannot.T N T − 1

p(X) = s 0
+ s 1X

Secret :  line  

Shares : points      of 
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Introducing Shamir Secret Sharing

 out of  parties can collaborate to recover a message and  parties cannot.T N T − 1

“Through T points goes only one curve of degree T-1” 

Secret :  curve of degree T-1 

Shares : points      of 
Reconstruction here is linear



THRESHOLD SIGNATURE 

 SIGNATURE SCHEME

 KEY DISTRIBUTION / SHARING 

+

=



BACK
THRESHOLDTO 

THE



KEYGEN

𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

𝗌𝗄 = L1𝗌𝗄1 + L2𝗌𝗄2 + L5𝗌𝗄5



𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

       𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
c = Hash(m, w*)
z

𝗌𝗄 = L1𝗌𝗄1 + L2𝗌𝗄2 + L5𝗌𝗄5



𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

       𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
c = Hash(m, w*)
z

1 - Agree on challenge c

c

𝗌𝗄 = L1𝗌𝗄1 + L2𝗌𝗄2 + L5𝗌𝗄5



𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

       𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
c = Hash(m, w*)
z

z1 = c ⋅ 𝗌𝗄1 + r1

z2 = c ⋅ 𝗌𝗄2 + r2

z5 = c ⋅ 𝗌𝗄5 + r5

1 - Agree on challenge c
2 - Compute the partial signature 𝗌𝗄 = L1𝗌𝗄1 + L2𝗌𝗄2 + L5𝗌𝗄5



𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6

       𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
c = Hash(m, w*)
z

1 - Agree on challenge c

z1 = c ⋅ 𝗌𝗄1 + r1

z2 = c ⋅ 𝗌𝗄2 + r2

z5 = c ⋅ 𝗌𝗄5 + r5

2 - Compute the partial signature
3 -Combine

𝖢𝗈𝗆𝖻𝗂𝗇𝖾

Output  (c, L1z1 + L2z2 + L5z5)

𝗌𝗄 = L1𝗌𝗄1 + L2𝗌𝗄2 + L5𝗌𝗄5



and now what?  



z = L1z1 + L2z2 + L5z5 = c ⋅ (L1𝗌𝗄1 + L2𝗌𝗄2 + L5𝗌𝗄5) + (L1r1 + L2r2 + L5r5)

𝗌𝗄1

𝗌𝗄2

𝗌𝗄3

𝗌𝗄4

𝗌𝗄5

𝗌𝗄6
z1 = c ⋅ 𝗌𝗄1 + r1

z2 = c ⋅ 𝗌𝗄2 + r2

z5 = c ⋅ 𝗌𝗄5 + r5

Secret sharing  
of the secret

Secret sharing  
of the noise



secret sharing signing combining verifying 

noise sharing 



Sharing of secret key

Going further… the big picture

Sharing of masking noise

Sharing of masking noise

Shamir

Small D* [dPENP25] 

Pelican [ENP24]

TRaccoon [PKM+24],[EKT24]

Shamir

Small

Small

functionally  

equivalent

(+) Robustness & possible DKG

(-) No Identifiable abort 
(-) no DKG, no robustness 

(+) big threshold, small com cost 

(+) Tighter Id abort 
(+) possbile DKG 

Finally [dPN25] 
Th-MLDSA [BCdP+25]

Shamir

(+) Compatible with ML-DSA 

(—) Small threshold only

!Small



𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short  𝗏𝗄 = A ⋅ 𝗌𝗄 𝗌𝗄

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r1

w1 = A ⋅ r1

•  c = Hash(m, w1 + w2 + w3)

• z1 = c ⋅ 𝗌𝗄𝟣 + r1

𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z − c ⋅ 𝗏𝗄
c = Hash(m, w*)
z

• Output  c, z1

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r2

w2 = A ⋅ r2

•  c = Hash(m, w1 + w2 + w3)

• z2 = c ⋅ 𝗌𝗄2 + r2

• Output  c, z2

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r3

w3 = A ⋅ r3

•  c = Hash(m, w1 + w2 + w3)

• z3 = c ⋅ 𝗌𝗄3 + r3

• Output  c, z3

𝖢𝗈𝗆𝖻𝗂𝗇𝖾

𝗌𝗄2 𝗌𝗄3𝗌𝗄1

• Output  (c, z1 + z2 + z3)

𝖯𝖺𝗋𝗍𝗂𝖺𝗅𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z1 − c ⋅ 𝗏𝗄1

c = Hash(m, w*)
z1

𝖯𝖺𝗋𝗍𝗂𝖺𝗅𝖵𝖾𝗋𝗂𝖿𝗒

•  

• Assert  

• Assert  short

w * = A ⋅ z3 − c ⋅ 𝗏𝗄3

c = Hash(m, w*)
z3



What is happening here?

required assumption on dkg/key sharing 
 all users have generated and distributed/exchanged keys securely. 

 their secret keys and their reconstruction coefficients are short
⇒

⇒

Achievable by ramp secret sharing / distributed secret sharing techniques 

share of signature = signature of share 





Short look at the norm verification

∥z∥2 = ∑
i

∥zi∥2 + ∑
i≠j

⟨zi, zj⟩

  where sig = (c, z) z = ∑
i

zi

 thanks to PartialVerify≤ B2
part

Can not assume ’s are Gaussians (=honest). 

This corresponds to malicious users could 

align their ’s.

zi

zi(  fully honest case)≈
(what SIS bound must cover)



How malicious users can break it
idea: a subset  of malicious users collude >> can pass PartialVerify, but fail the global one 𝙲

∑
i∈𝙲

zi

∑
i∉𝙲

zi

∑
i∈𝚄

zi

Corrupted case: somewhat aligned vectorsHonest case: small Gaussian vectors

∑
i∈𝚄

zi

worst-case SIS bound

honest-case  
bound



What can we say about honest vectors?
Gaussian vectors are in a  
narrow spherical crust. 

 
 

 with 
overwhelming probability. 

⇒ ∥z∥ ∈ σ n ⋅ [1 − δ,1 + δ]

direction of a Gaussian is  
uniformly distributed. 

 

 
  

for any unit vector  

⇒ ℙz←𝒟σ[⟨z, u⟩ ≥ σ ℓ] ≤ 2−Ω(ℓ)

u

honest signatures :  and  

vector correlating too much with the final signature is likely to be corrupted 

∥zi∥ ≈ O(σ n) ∑𝚄
zi ≈ O(σ Nn)

u
unlikelylik

el
y



D* identifier 

The D* test

1.  

2. For  

• If , put user  in  

• Else if , put user  in  

3. Return .

traitors = ∅
i ∈ 𝚄

∥zi∥ > (1 + δ)σ n i traitors
⟨zi, z − zi⟩
∥z − zi∥

> σ ℓ i traitors

traitors

Nσ n ⋅ (1 + o(1)) Nσ ρn ⋅ (1 + o(1))

get 10-20 bits of security — for free



Beyond Raccoon : back to rejection sampling

signatures are too big for passing MLDSA verify —> add rejection  

motto : “reject until the distribution of signatures is small enough ”

no free lunch: the further away my starting distribution is, the more reject I have to do.



Rejection sampling 

Beyond Raccoon : back to rejection sampling

•  

•  

• If  then  

• Return 

z = v + r

b ← ℬ (max ( χz(z)
Mχr(r)

,1))
b = 0 z = ⊥

z

Start from , add mask , targeting  

 

 distribution of  is independent of the secret value 

v r ∼ χr χz

𝖱𝖾𝗃(v, χr, χz, M) ∼ (χz |ℬ(1/M))
→ z v



𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short  𝗏𝗄 = A ⋅ 𝗌𝗄 𝗌𝗄

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r1

w1 = A ⋅ r1

•  c = Hash(m, w1 + w2 + w3)

• z1 = c ⋅ 𝗌𝗄𝟣 + r1

• Output  c, z1

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r2

w2 = A ⋅ r2

•  c = Hash(m, w1 + w2 + w3)

• z2 = c ⋅ 𝗌𝗄2 + r2

• Output  c, z2

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r3

w3 = A ⋅ r3

•  c = Hash(m, w1 + w2 + w3)

• z3 = c ⋅ 𝗌𝗄3 + r3

• Output  c, z3

𝖢𝗈𝗆𝖻𝗂𝗇𝖾

𝗌𝗄2 𝗌𝗄3𝗌𝗄1

• Output  (c, z1 + z2 + z3)

Rejection sampling 

z1 = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄1, χr, χz, M; r1)

Rejection sampling 

z2 = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄2, χr, χz, M; r2)

Rejection sampling 

z3 = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄3, χr, χz, M; r3)



𝖪𝖾𝗒𝗀𝖾𝗇() → 𝗌𝗄, 𝗏𝗄

• , for short  𝗏𝗄 = A ⋅ 𝗌𝗄 𝗌𝗄

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r1

w1 = A ⋅ r1

•  c = Hash(m, w1 + w2 + w3)

• z1 = c ⋅ 𝗌𝗄𝟣 + r1

• Output  c, z1

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r2

w2 = A ⋅ r2

•  c = Hash(m, w1 + w2 + w3)

• z2 = c ⋅ 𝗌𝗄2 + r2

• Output  c, z2

 𝖲𝗂𝗀𝗇

• Sample a short  

•
r3

w3 = A ⋅ r3

•  c = Hash(m, w1 + w2 + w3)

• z3 = c ⋅ 𝗌𝗄3 + r3

• Output  c, z3

𝖢𝗈𝗆𝖻𝗂𝗇𝖾

𝗌𝗄2 𝗌𝗄3𝗌𝗄1

• if  too large, reject 

• Output  

z1 + z2 + z3

(c, z1 + z2 + z3)

Rejection sampling 

z1 = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄1, χr, χz, M; r1)

Rejection sampling 

z2 = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄2, χr, χz, M; r2)

Rejection sampling 

z3 = 𝖱𝖾𝗃(c ⋅ 𝗌𝗄3, χr, χz, M; r3)



Beyond Raccoon : back to rejection sampling

signatures are too big for passing MLDSA verify —> add rejection  

 Needs to carefully control the parameters of the rejection  

 ✔ Works !  
     ✗ Can’t scale beyond 6 users with the current technology 

⇒



Quantitatively : ThMLDSA

Needs a few more tricks to get under MLDSA verification 
  

- Unbalanced rejection sampling on hyperballs 
- Parallel repetitions

scales … quite badly 
But … is compatible with the standard ML-DSA ! Communication cost 

Timing for Th-

• 1st round can be done offline (independent of 
the message)  

• An existing MLDSA key can be shared 
(amounts to sample a sharing of zero)  

• Compatible but not indistinguishable : the 
distribution of signature is not the same same 
as the original MLDSA

Communication cost for Th-MLDSA at N parties with threshold T

Timing for Th-MLDSA on a MacBook M3 


