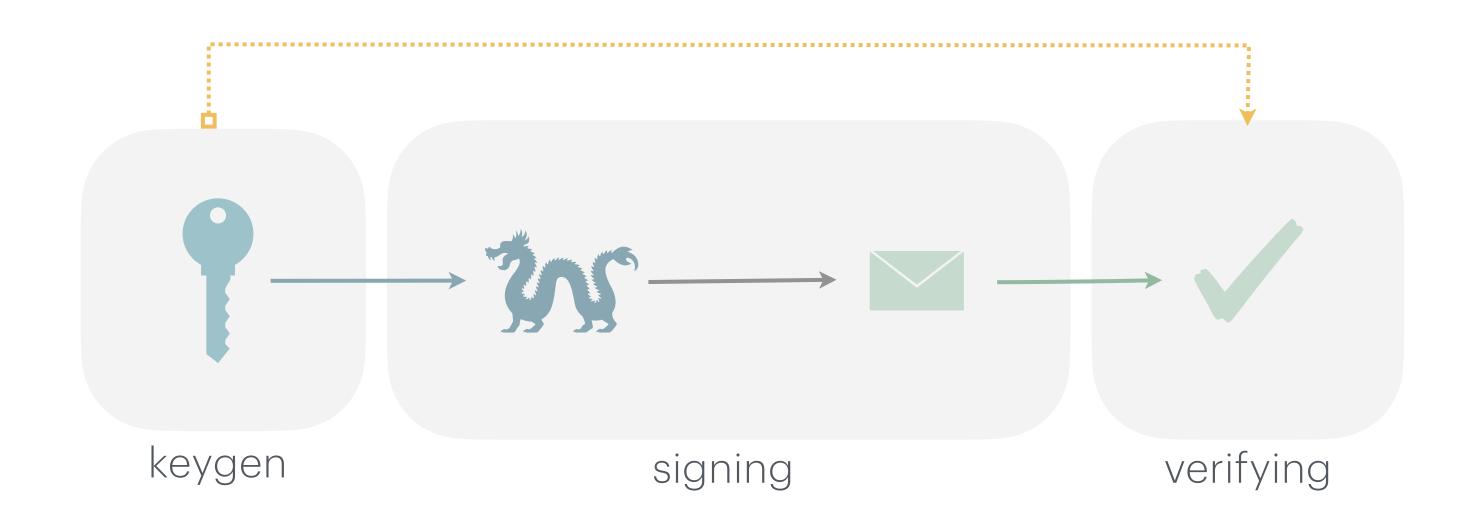
The big picture of the shold

What is a signature?

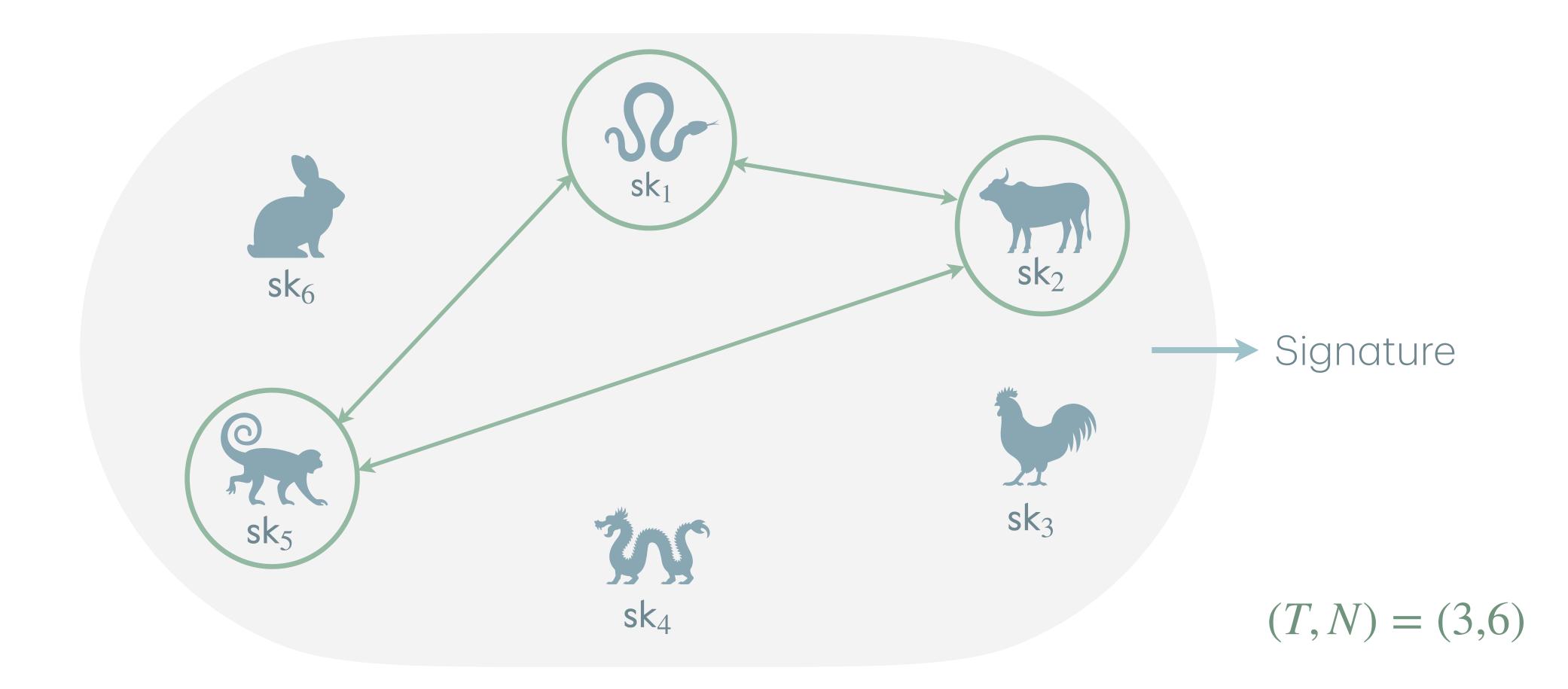
2 party protocol to verify the **authenticity** of a message



What is a threshold signature?

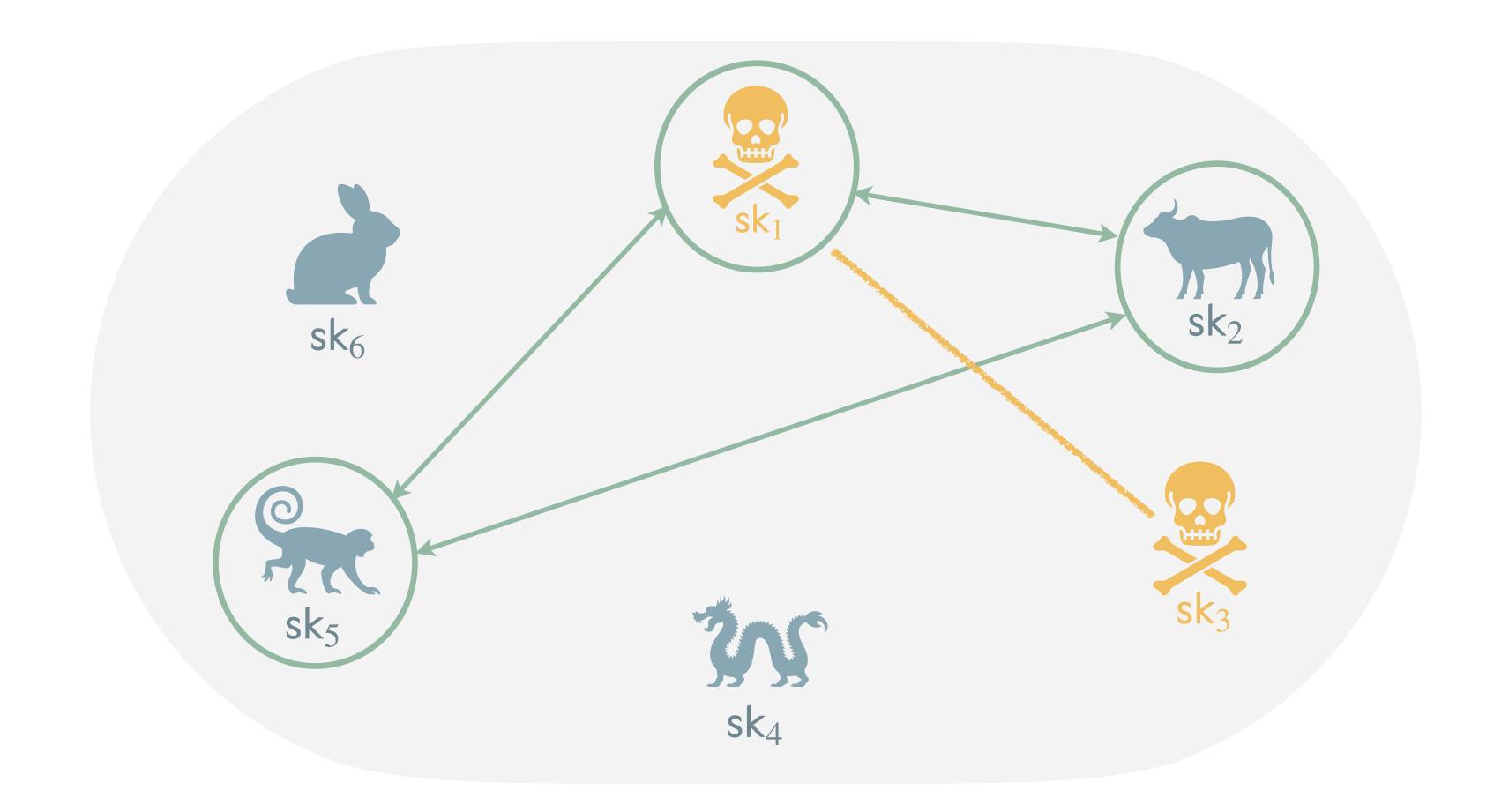
Interactive protocol to distribute signature generation such that:

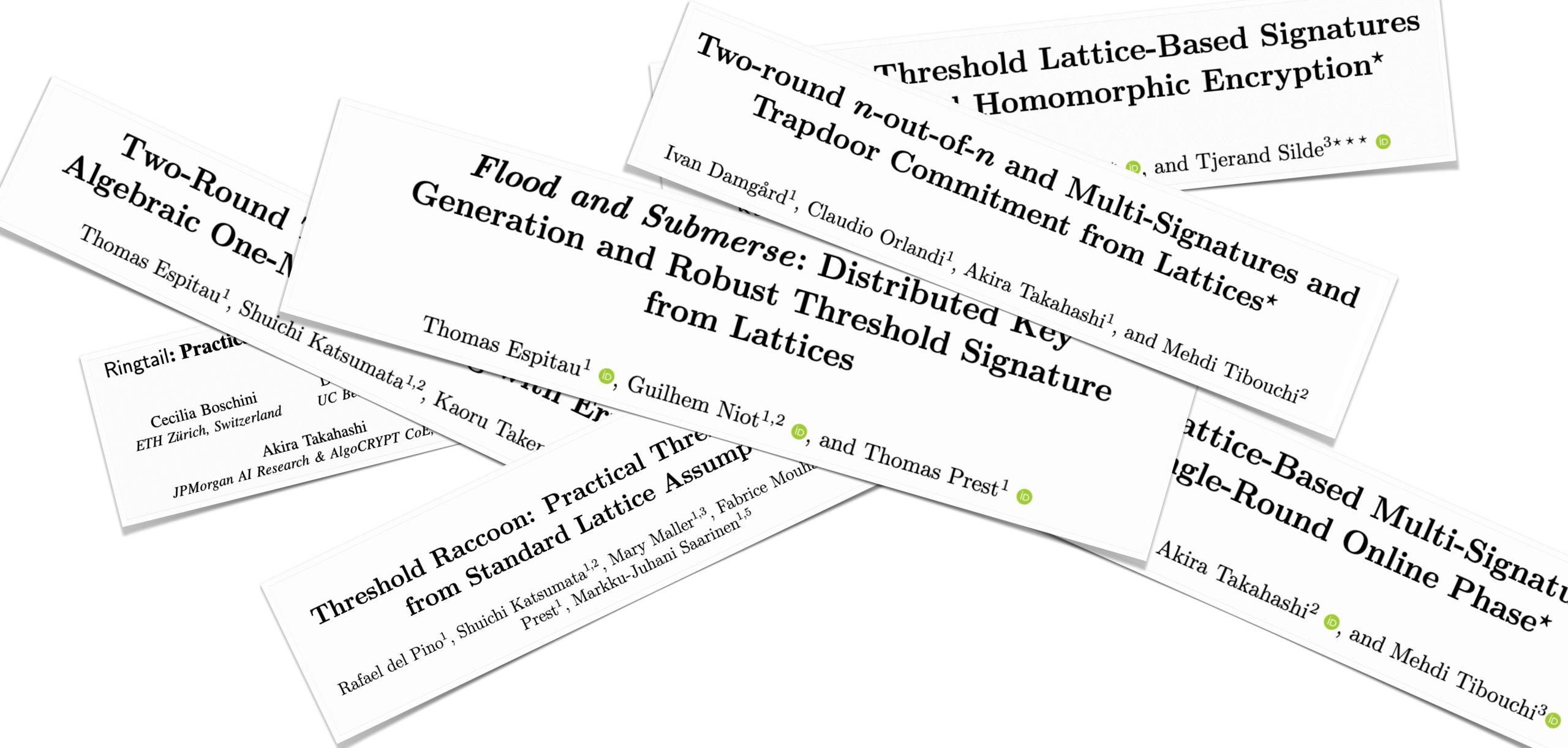
T out of N parties can **collaborate** to sign a message and T-1 parties **cannot** sign.

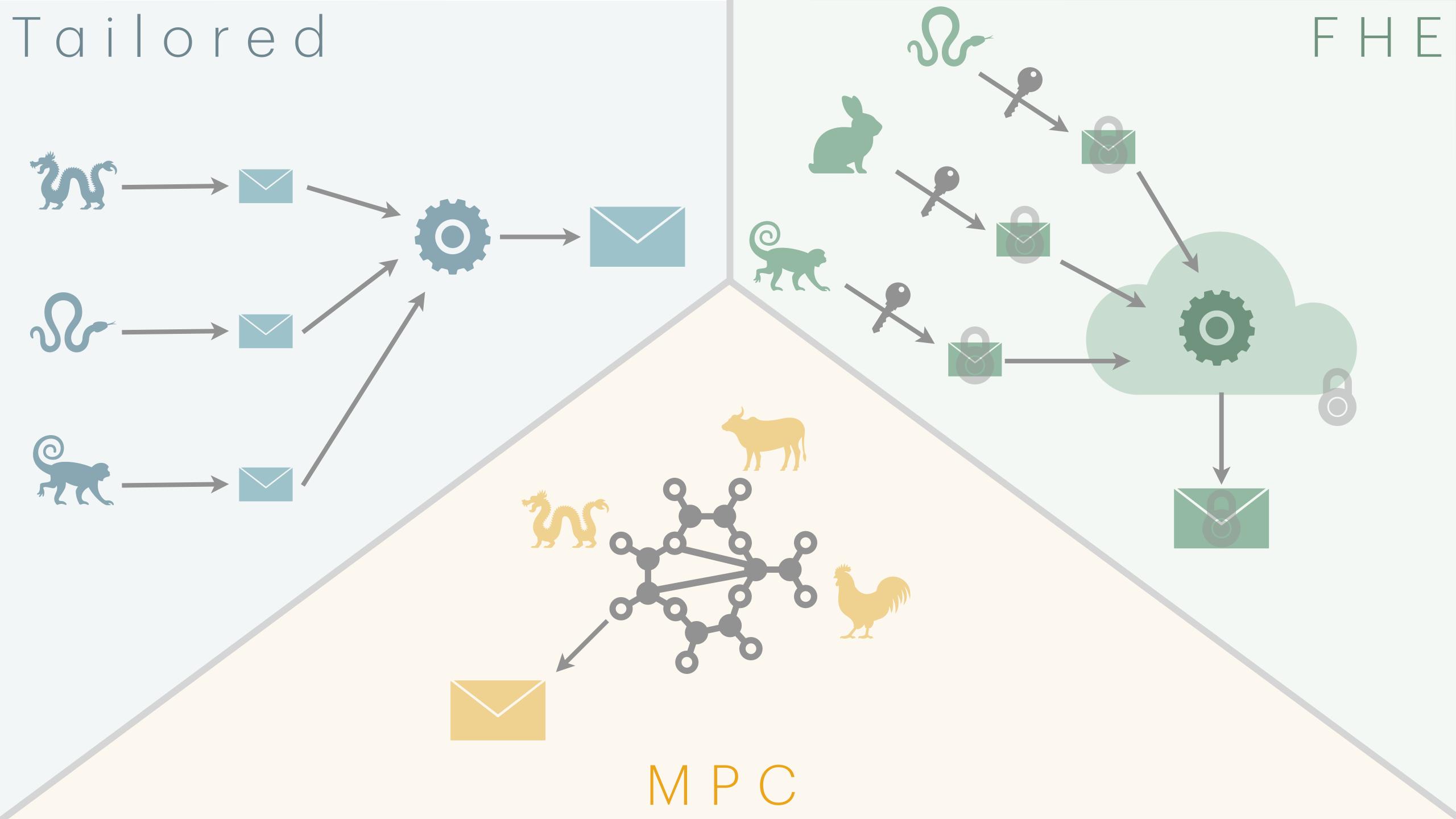


Security requirements

- \diamond Correctness: with at least T-out-of-N partial signing keys, we can sign.
- \diamond Unforgeability: remains unforgeable even if up to T-1 parties are corrupted, where $T' \leq T-1$.



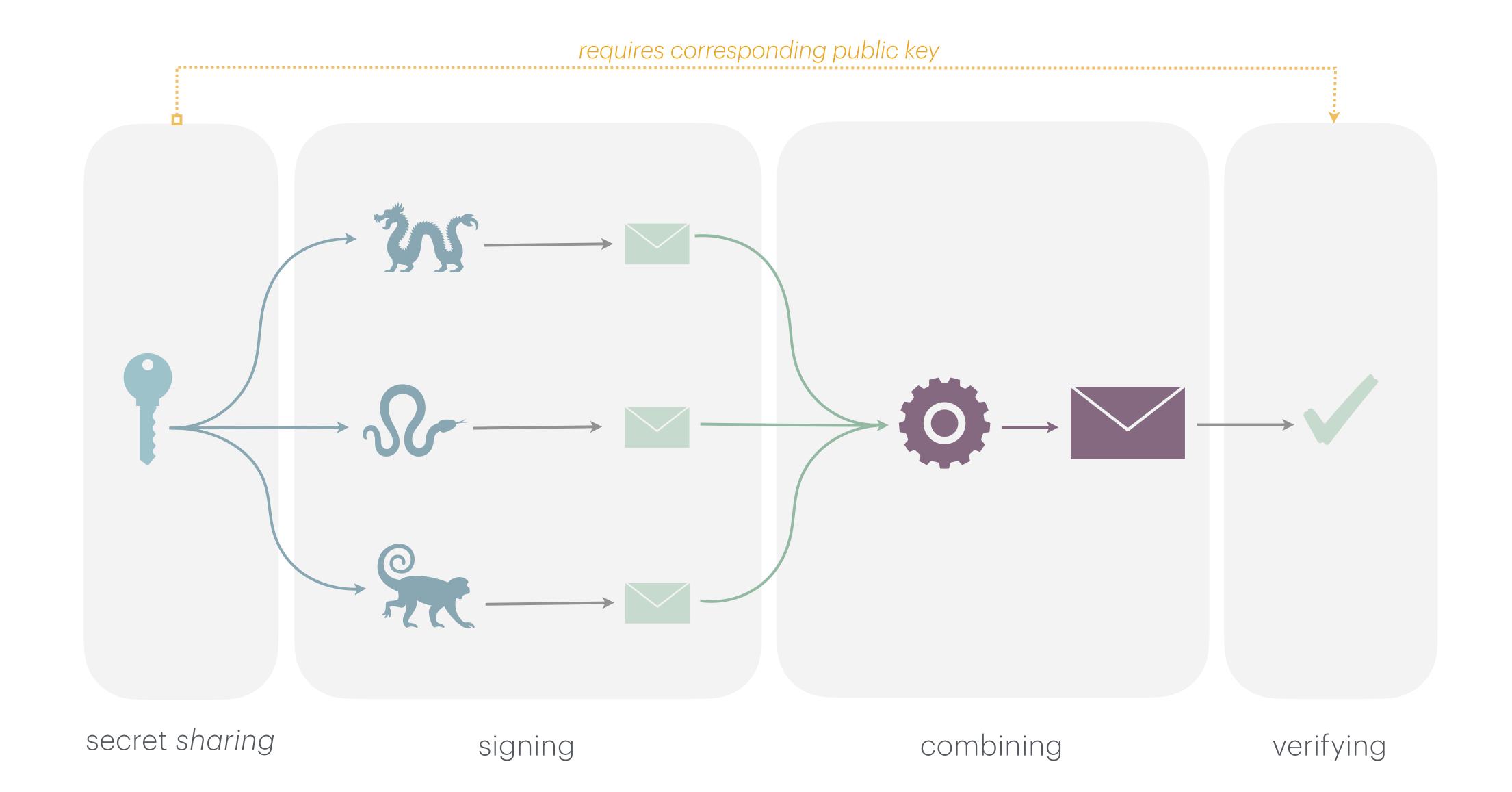




Family of techniques different designs choices, different pros/cons

Thresholdization technique	Signature size	Speed	Rounds	Comm cost/party
MPC	Small	Slow	15	≥ 1MB
FHE	Medium	As fast as FHE	2	≥ 1MB
Tailored	S-M	Fast	2-4	20 kB

What is the rationale of (tailored) threshold?



SIGNATURE SCHEME

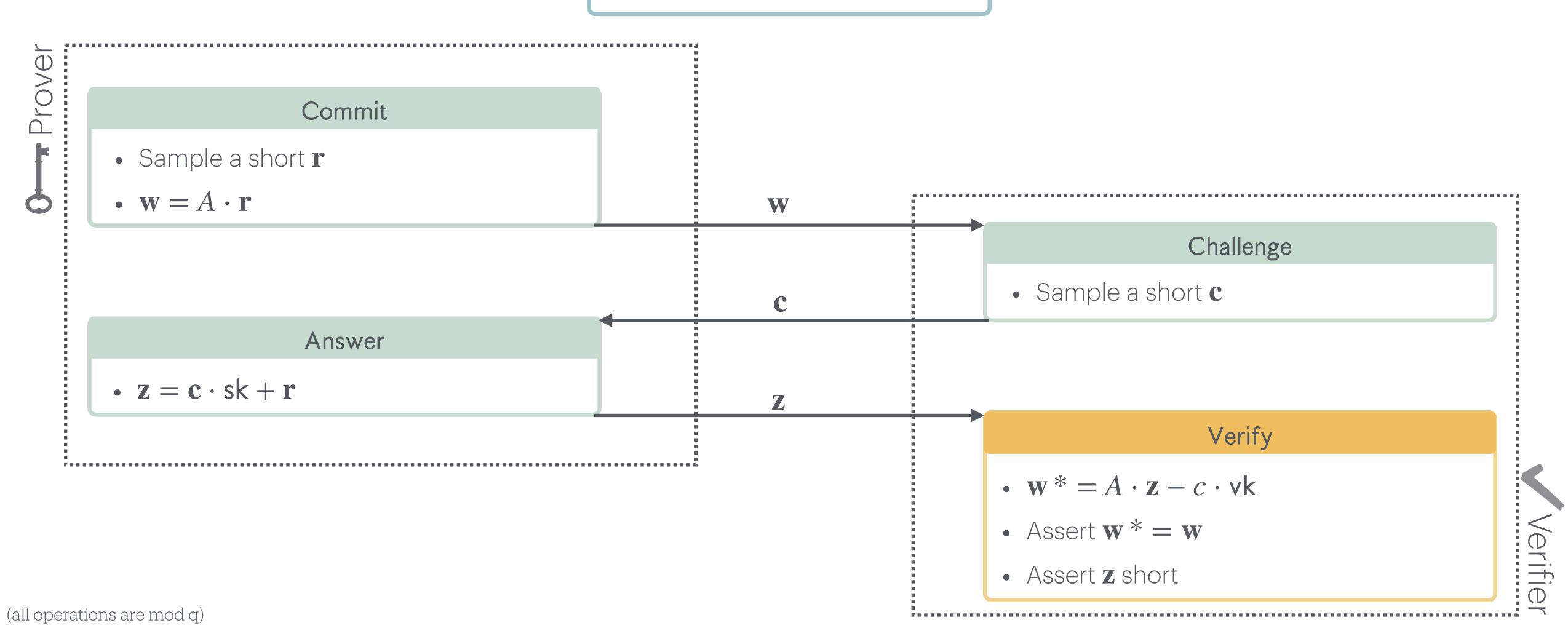
KEY DISTRIBUTION / SHARING

THRESHOLD SIGNATURE

(flooded) Fiat-Shamir 101

 $Keygen() \rightarrow sk, vk$

• $vk = A \cdot sk$, for short sk



 $Keygen() \rightarrow sk, vk$

• $vk = A \cdot sk$, for short sk

Prove

Commit

- Sample a short **r**
- $\mathbf{w} = A \cdot \mathbf{r}$

Challenge

• Sample a short **c**

Answer

•
$$\mathbf{z} = \mathbf{c} \cdot \mathsf{sk} + \mathbf{r}$$

7

•
$$\mathbf{w}^* = A \cdot \mathbf{z} - c \cdot \mathsf{vk}$$

- Assert $\mathbf{w}^* = \mathbf{w}$
- Assert **z** short

 $Keygen() \rightarrow sk, vk$

• $vk = A \cdot sk$, for short sk

O + Prove

Commit

• Sample a short **r**

•
$$\mathbf{w} = A \cdot \mathbf{r}$$

Challenge

• $\mathbf{c} = \mathsf{Hash}(\mathbf{w})$

Answer

• $\mathbf{z} = \mathbf{c} \cdot \mathsf{sk} + \mathbf{r}$

C, Z

•
$$\mathbf{w}^* = A \cdot \mathbf{z} - c \cdot \mathsf{vk}$$

- Assert $\mathbf{w}^* = \mathbf{w}$
- Assert **z** short

 $Keygen() \rightarrow sk, vk$

• $vk = A \cdot sk$, for short sk

Prove

Commit

- Sample a short **r**
- $\mathbf{w} = A \cdot \mathbf{r}$

Challenge

• $\mathbf{c} = \mathsf{Hash}(\mathbf{w})$

Answer

• $\mathbf{z} = \mathbf{c} \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$

C, Z

- $\mathbf{w}^* = A \cdot \mathbf{z} c \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(\mathbf{w}^*)$
- Assert **z** short

 $Keygen() \rightarrow sk, vk$

• $vk = A \cdot sk$, for short sk

Prove

Commit

- Sample a short **r**
- $\mathbf{w} = A \cdot \mathbf{r}$
- $\mathbf{c} = \mathsf{Hash}(\mathbf{w})$
- $\mathbf{z} = \mathbf{c} \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$

 \mathbf{C}, \mathbf{Z}

- $\mathbf{w}^* = A \cdot \mathbf{z} c \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(\mathbf{w}^*)$
- Assert **z** short

Fiat-Shamir on lattices

Keygen() → sk, vk

• $vk = A \cdot sk$, for short sk

Sign

- Sample a short **r**
- $\mathbf{w} = A \cdot \mathbf{r}$
- $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w})$
- $\mathbf{z} = \mathbf{c} \cdot \mathbf{s} \mathbf{k} + \mathbf{r}$
- Output **c**, **z**

- $\mathbf{w}^* = A \cdot \mathbf{z} c \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert **z** short

What about hardness?

Short integer solution (SIS) • $vk = A \cdot sk$, for short sk

Keygen() → sk, vk

Short integer solution (SIS)

Hint-LWE

Sign

- Sample a short **r**
- $\mathbf{w} = A \cdot \mathbf{r}$
- $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w})$
- $z = c \cdot sk + r$
 - Output c, z

Verify

Short integer solution (SIS) • $\mathbf{w}^* = A \cdot \mathbf{z} - c \cdot \mathbf{vk}$

- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert **z** short

KEY DISTRIBUTION / SHARING

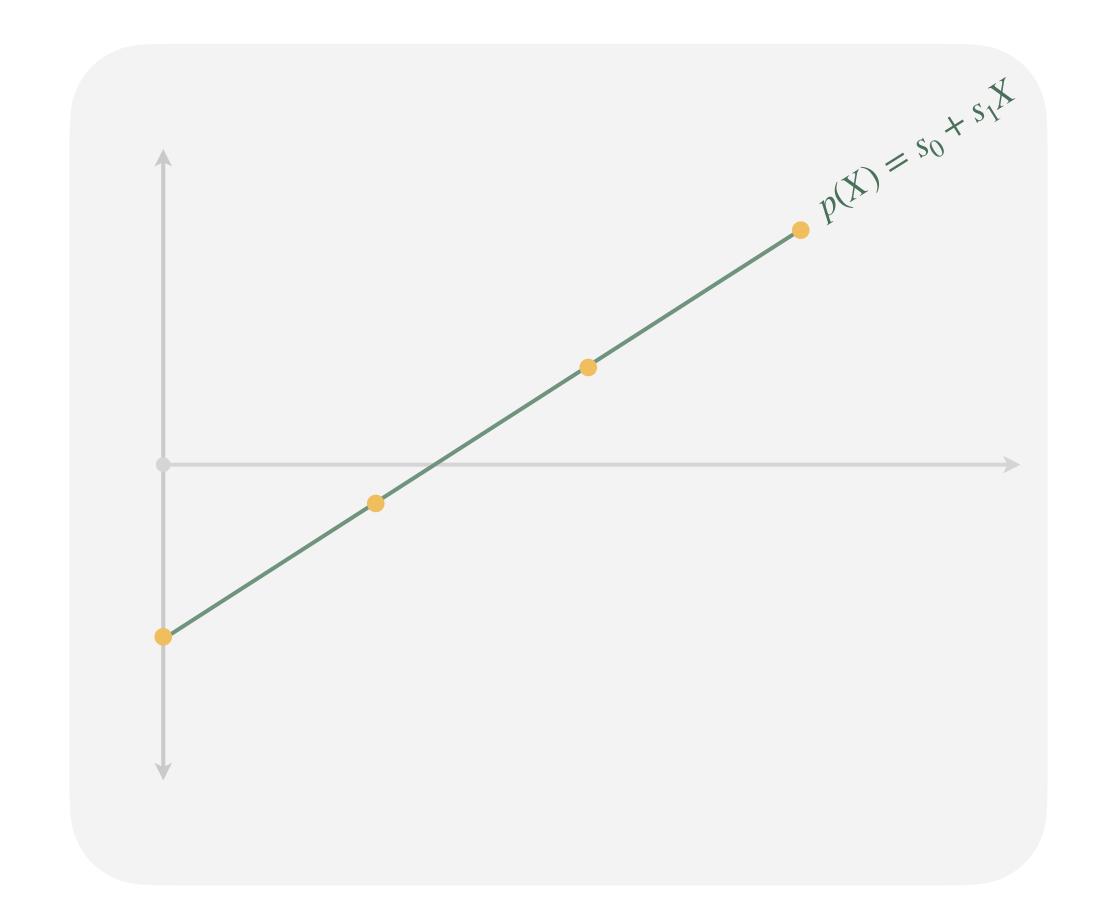
THRESHOLD SIGNATURE

How to share a secret?

T out of N parties can **collaborate** to recover a message and T-1 parties **cannot**.

Secret: line /

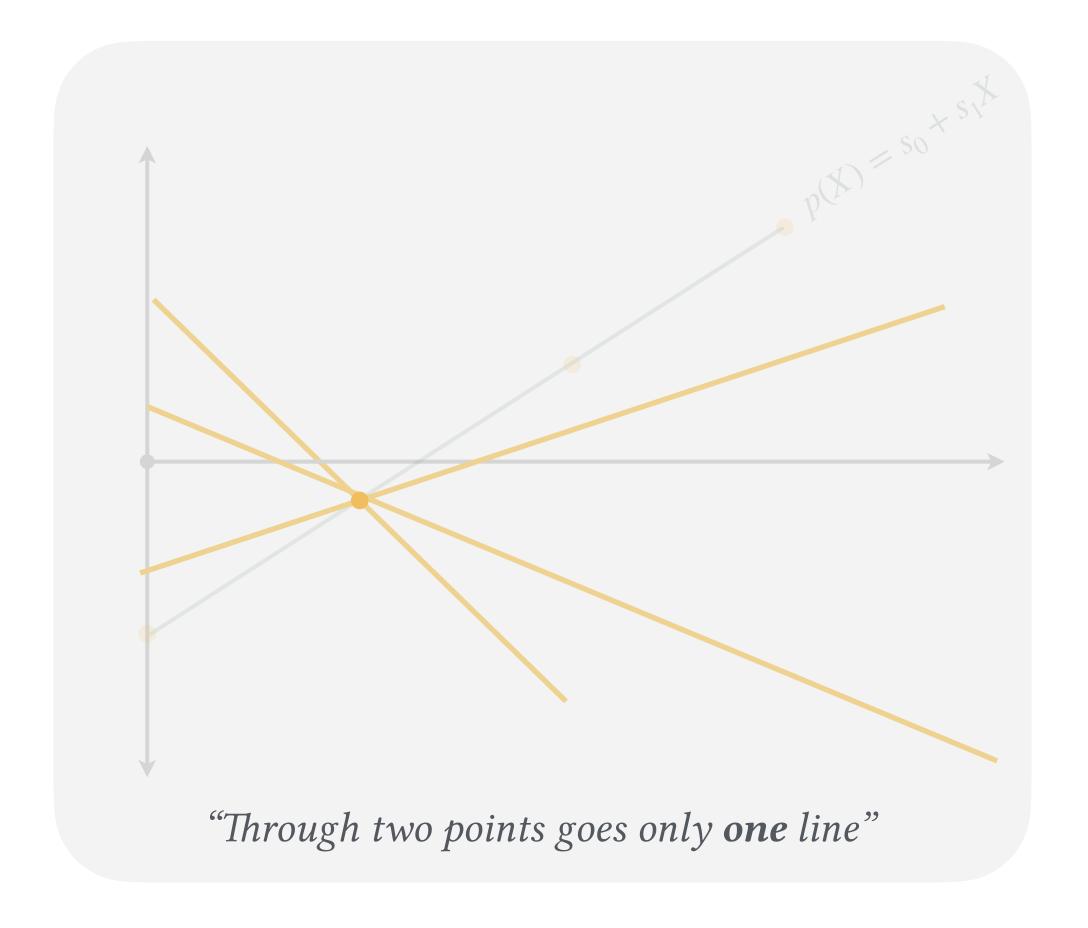
Shares: points of /



T out of N parties can **collaborate** to recover a message and T-1 parties **cannot**.

Secret: line /

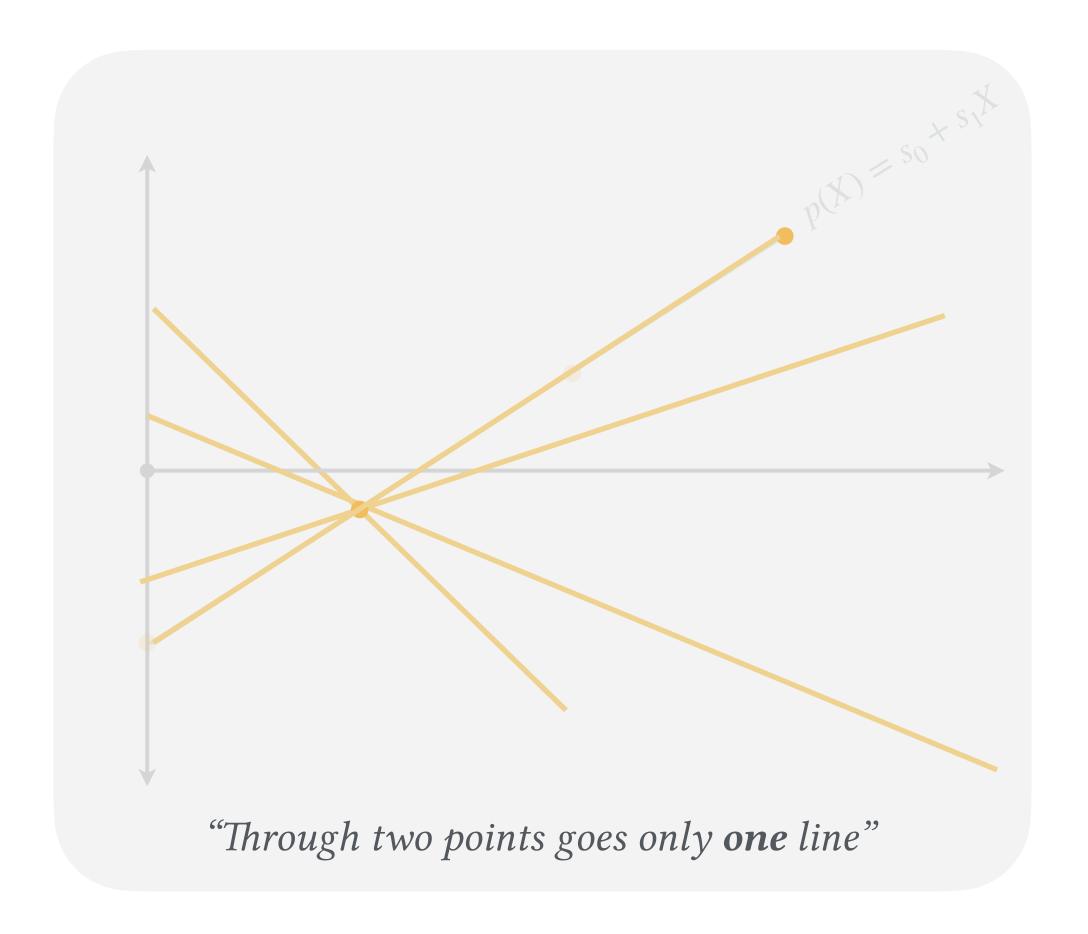
Shares: points of /



T out of N parties can **collaborate** to recover a message and T-1 parties **cannot**.

Secret: line /

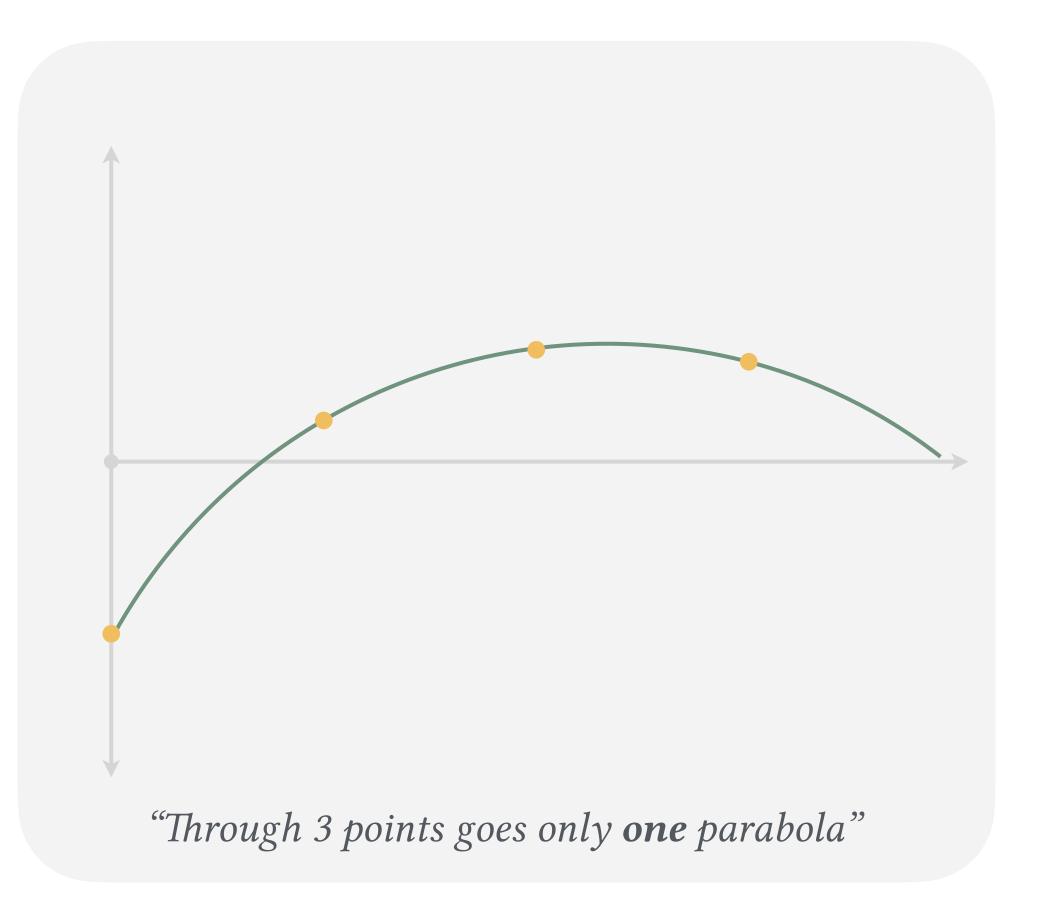
Shares: points of /



T out of N parties can **collaborate** to recover a message and T-1 parties **cannot**.

Secret: curve of degree 2

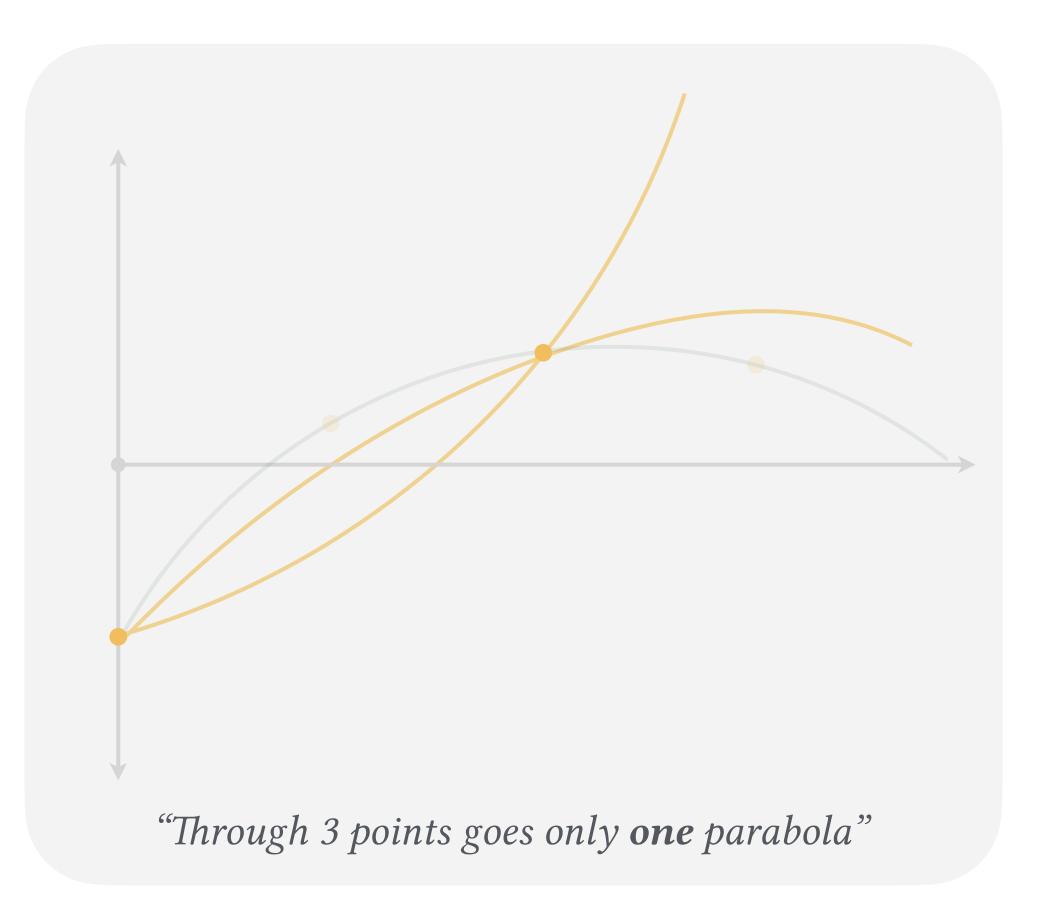
Shares: points of



T out of N parties can **collaborate** to recover a message and T-1 parties **cannot**.

Secret: curve of degree 2

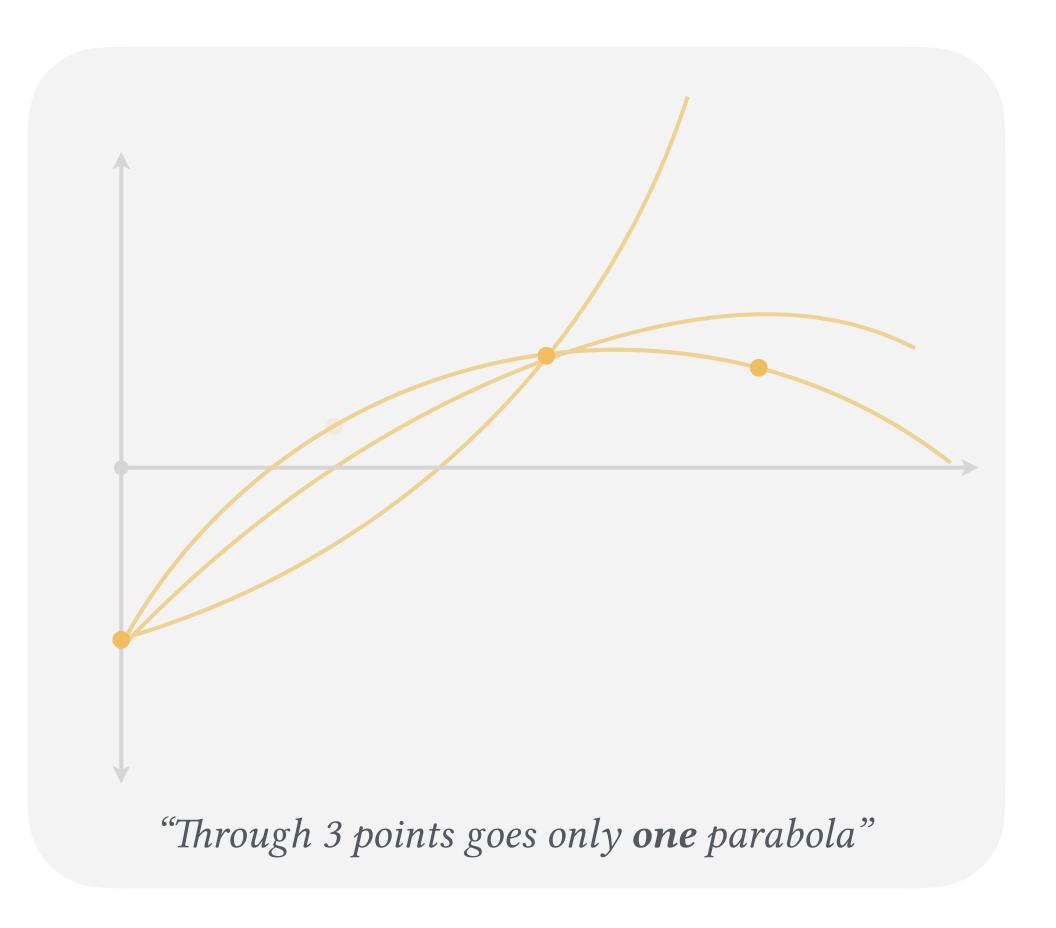
Shares: points of



T out of N parties can **collaborate** to recover a message and T-1 parties **cannot**.

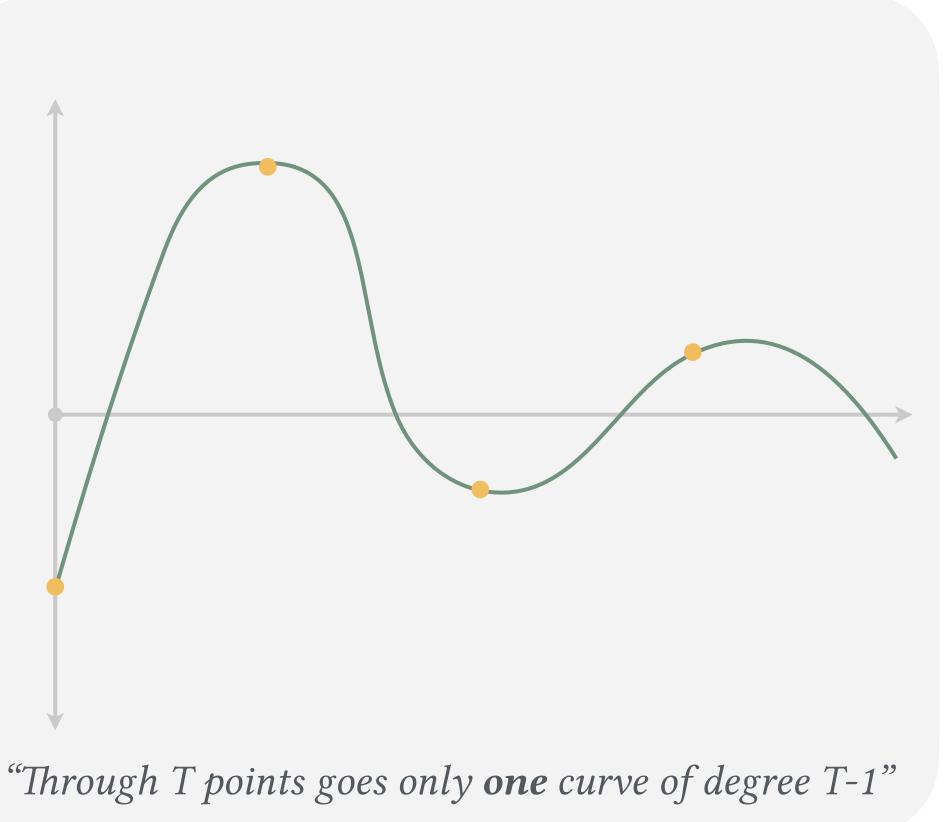
Secret: curve of degree 2

Shares: points of



Tout of N parties can collaborate to recover a message and T-1 parties cannot.

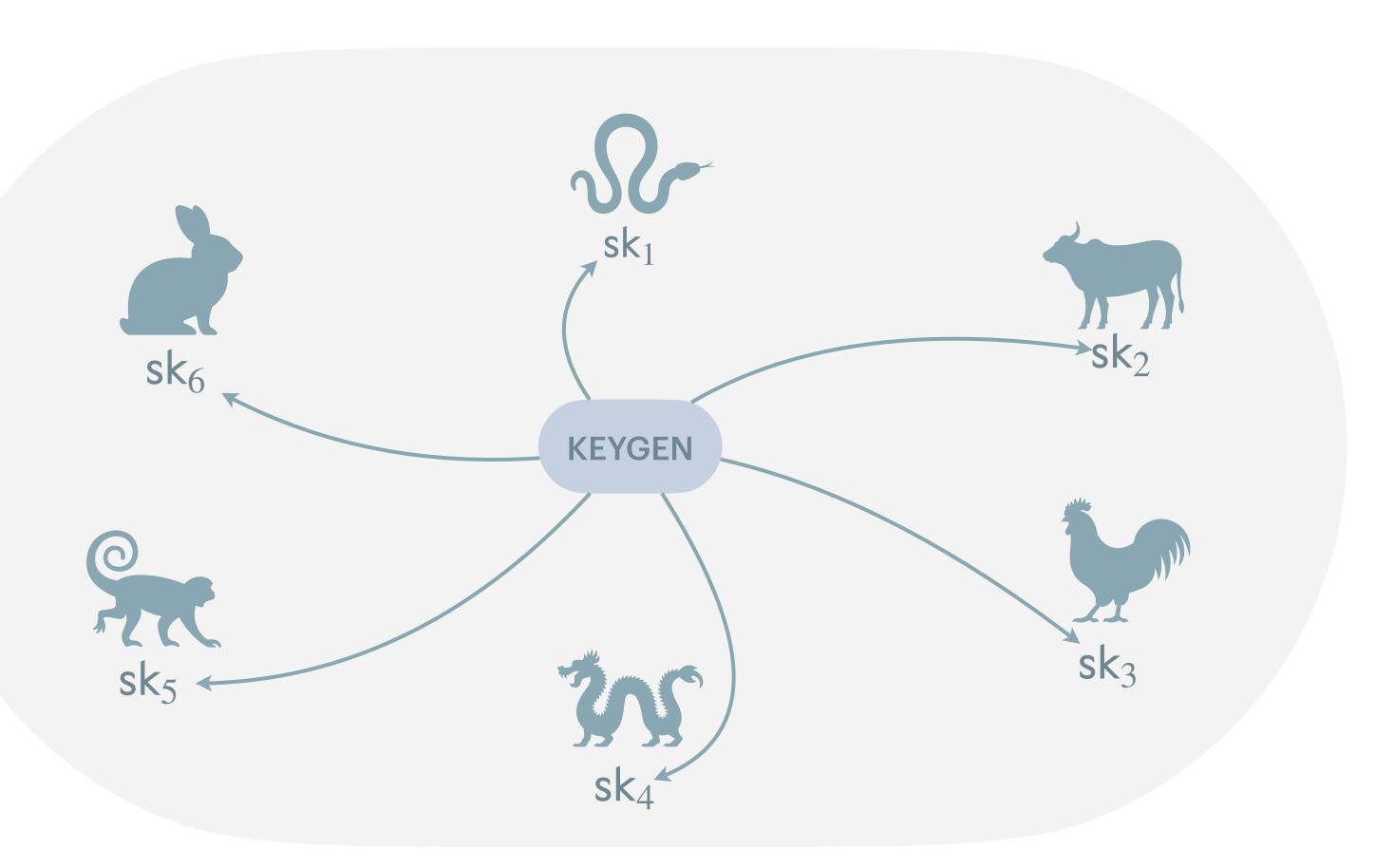
Reconstruction here is linear



SIGNATURE SCHEME KEY DISTRIBUTION / SHARING

THRESHOLD SIGNATURE

$$sk = L_1 sk_1 + L_2 sk_2 + L_5 sk_5$$

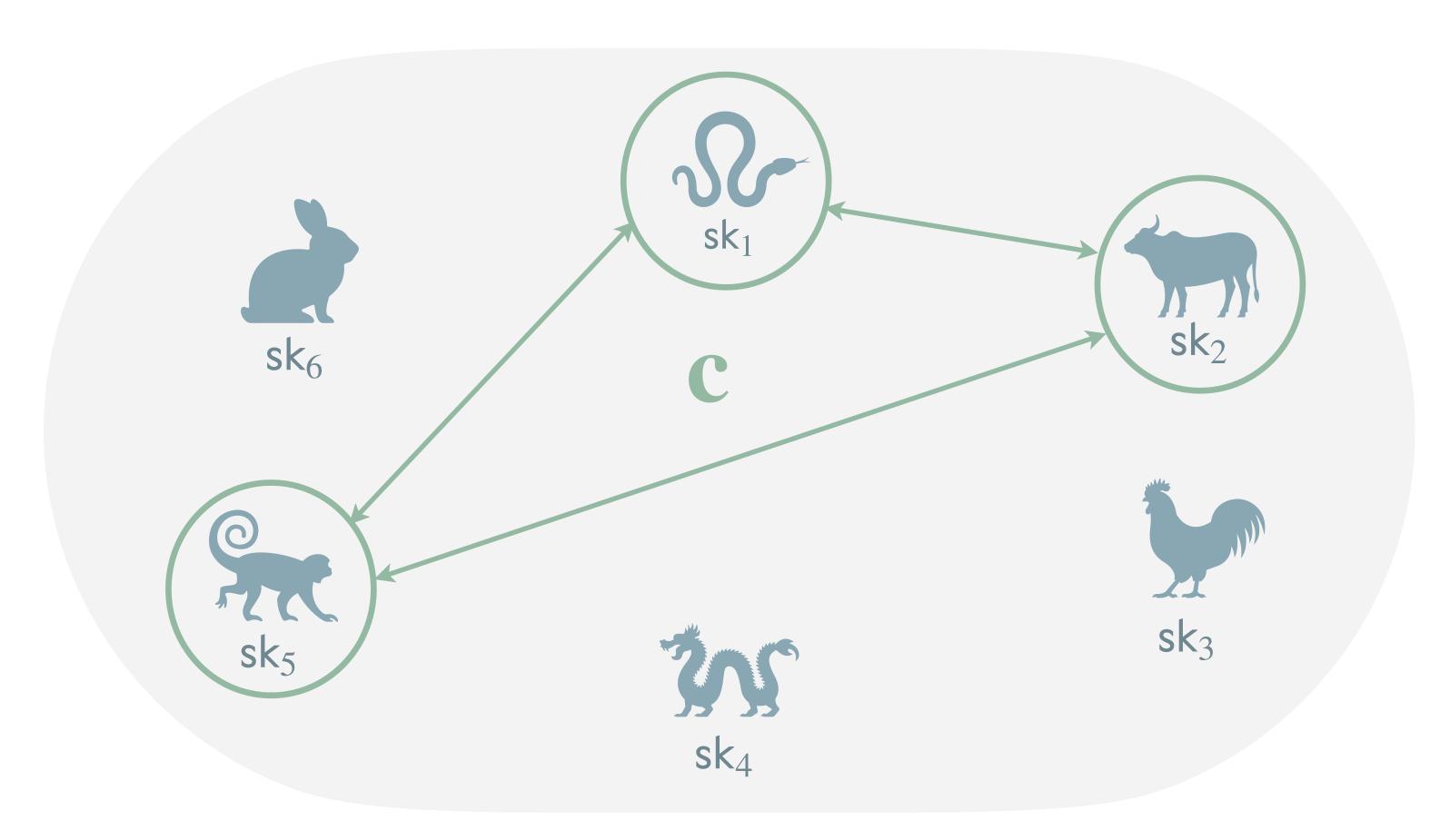


$$sk = L_1 sk_1 + L_2 sk_2 + L_5 sk_5$$

- $\mathbf{w}^* = A \cdot \mathbf{z} \mathbf{c} \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert **z** short

1 - Agree on challenge **c**

$$sk = L_1 sk_1 + L_2 sk_2 + L_5 sk_5$$

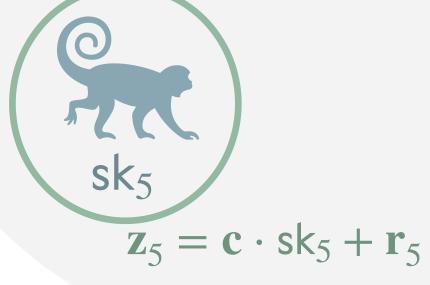


- $\mathbf{w}^* = A \cdot \mathbf{z} \mathbf{c} \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert **z** short

- 1 Agree on challenge c
- 2 Compute the partial signature

$$sk = L_1 sk_1 + L_2 sk_2 + L_5 sk_5$$





- $\mathbf{w}^* = A \cdot \mathbf{z} \mathbf{c} \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert **z** short

- 1 Agree on challenge c
- 2 Compute the partial signature

 $sk = L_1 sk_1 + L_2 sk_2 + L_5 sk_5$

3 -Combine

$$\mathbf{z}_5 = \mathbf{c} \cdot \mathsf{sk}_5 + \mathbf{r}_5$$

$$\mathbf{z}_2 = \mathbf{c} \cdot \mathsf{sk}_2 + \mathbf{r}_2$$

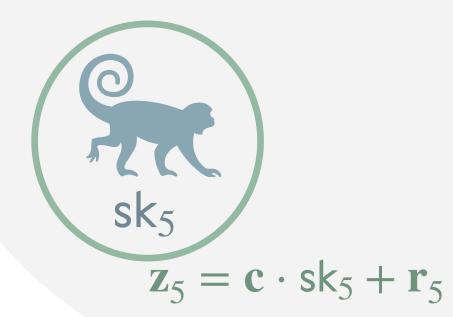
$$\mathbf{z}_1 = \mathbf{c} \cdot \mathsf{sk}_1 + \mathbf{r}_1$$

Combine

Output
$$(\mathbf{c}, L_1\mathbf{z}_1 + L_2\mathbf{z}_2 + L_5\mathbf{z}_5)$$

- $\mathbf{w}^* = A \cdot \mathbf{z} \mathbf{c} \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert **z** short

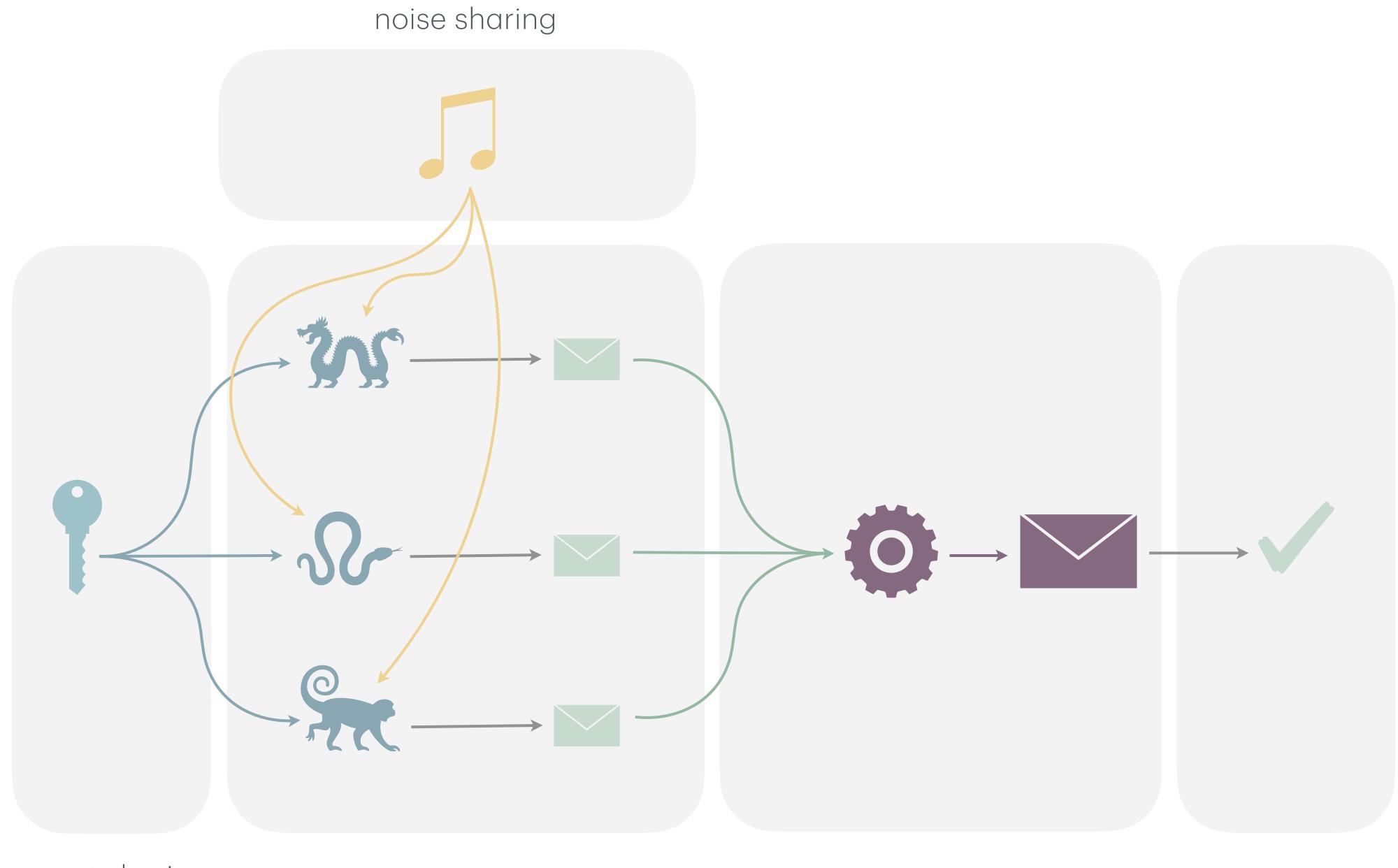
and now what?



$$\mathbf{z} = L_1 \mathbf{z}_1 + L_2 \mathbf{z}_2 + L_5 \mathbf{z}_5 = \mathbf{c} \cdot (L_1 \mathbf{s} \mathbf{k}_1 + L_2 \mathbf{s} \mathbf{k}_2 + L_5 \mathbf{s} \mathbf{k}_5) + (L_1 \mathbf{r}_1 + L_2 \mathbf{r}_2 + L_5 \mathbf{r}_5)$$

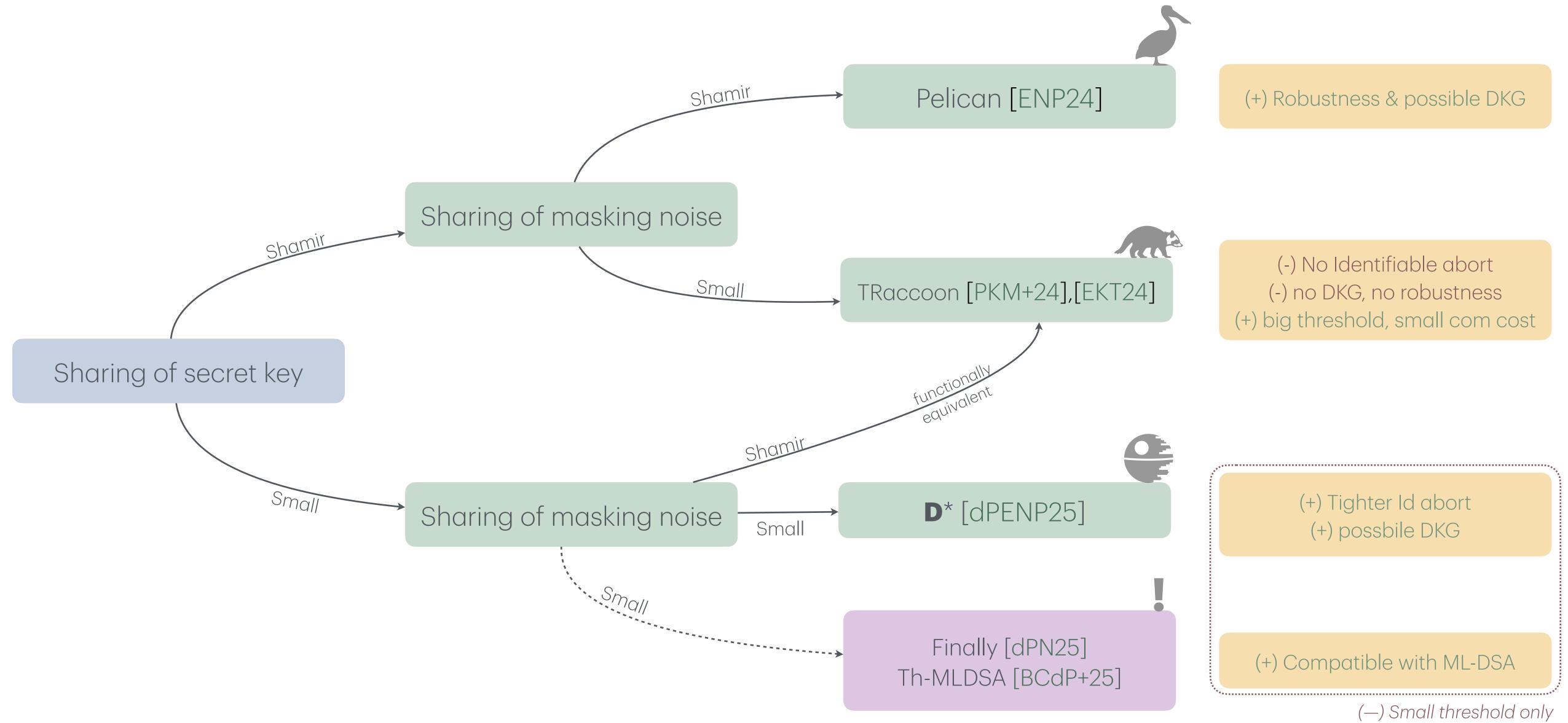
of the secret

Secret sharing Secret sharing of the noise



secret sharing signing combining verifying

Going further... the big picture



$Keygen() \rightarrow sk, vk$

• $vk = A \cdot sk$, for short sk

 sk_1

sk₃

Sign

- Sample a short \mathbf{r}_1
- $\mathbf{w}_1 = A \cdot \mathbf{r}_1$
- $c = Hash(m, w_1 + w_2 + w_3)$
- $\mathbf{z}_1 = \mathbf{c} \cdot \mathsf{sk}_1 + \mathbf{r}_1$
- Output **c**, **z**₁

Sign

 sk_2

- Sample a short ${f r}_2$
- $\mathbf{w}_2 = A \cdot \mathbf{r}_2$
- $c = Hash(m, w_1 + w_2 + w_3)$
- $\mathbf{z}_2 = \mathbf{c} \cdot \mathsf{sk}_2 + \mathbf{r}_2$
- Output **c**, **z**₂

Sign

- Sample a short ${\bf r}_3$
- $\mathbf{w}_3 = A \cdot \mathbf{r}_3$
- $c = Hash(m, w_1 + w_2 + w_3)$
- $\mathbf{z}_3 = \mathbf{c} \cdot \mathbf{s} \mathbf{k}_3 + \mathbf{r}_3$
- Output **c**, **z**₃

PartialVerify

- $\mathbf{w}^* = A \cdot \mathbf{z}_1 c \cdot \mathsf{vk}_1$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert \mathbf{z}_1 short

Combine

• Output $(c, z_1 + z_2 + z_3)$

Verify

- $\mathbf{w}^* = A \cdot \mathbf{z} c \cdot \mathsf{vk}$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert **z** short

PartialVerify

- $\mathbf{w}^* = A \cdot \mathbf{z}_3 c \cdot \mathsf{vk}_3$
- Assert $\mathbf{c} = \mathsf{Hash}(m, \mathbf{w}^*)$
- Assert \mathbf{z}_3 short

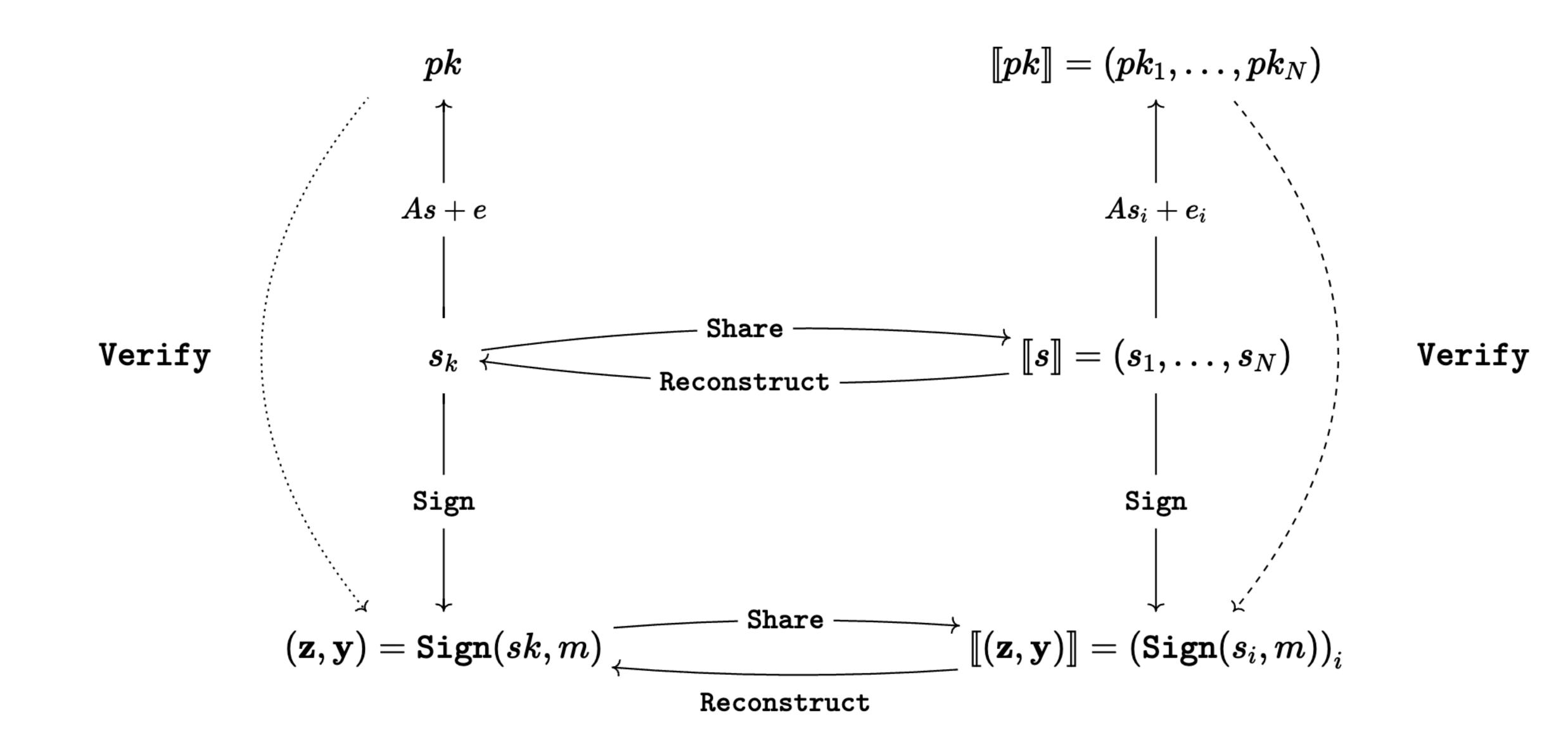
What is happening here?

share of signature = signature of share

required assumption on dkg/key sharing

- \Rightarrow all users have generated and distributed/exchanged keys securely.
 - ⇒ their secret keys and their reconstruction coefficients are short

Achievable by ramp secret sharing / distributed secret sharing techniques



Short look at the norm verification

$$sig = (c, \mathbf{z})$$
 where $\mathbf{z} = \sum_{i} \mathbf{z}_{i}$

$$\|\mathbf{z}\|^2 = \sum_{i} \|\mathbf{z}_i\|^2 + \sum_{i \neq j} \langle \mathbf{z}_i, \mathbf{z}_j \rangle$$

 $\leq B_{part}^2$ thanks to PartialVerify

(≈ fully honest case)

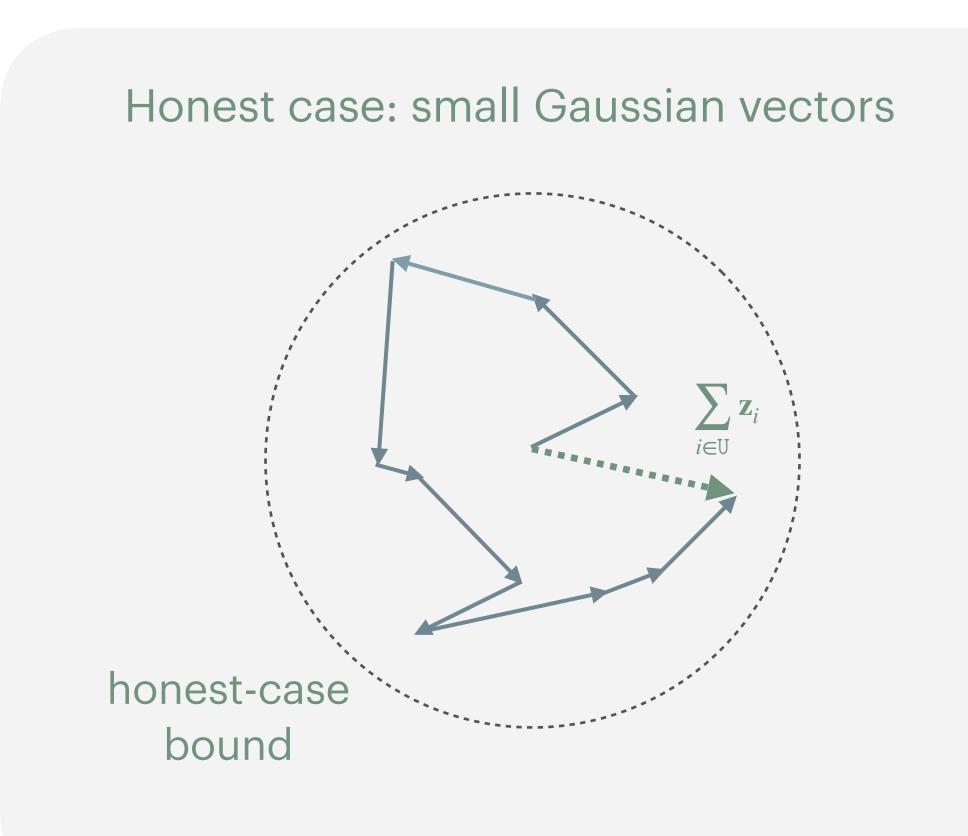
Can *not* assume \mathbf{z}_i 's are Gaussians (=honest). This corresponds to malicious users could

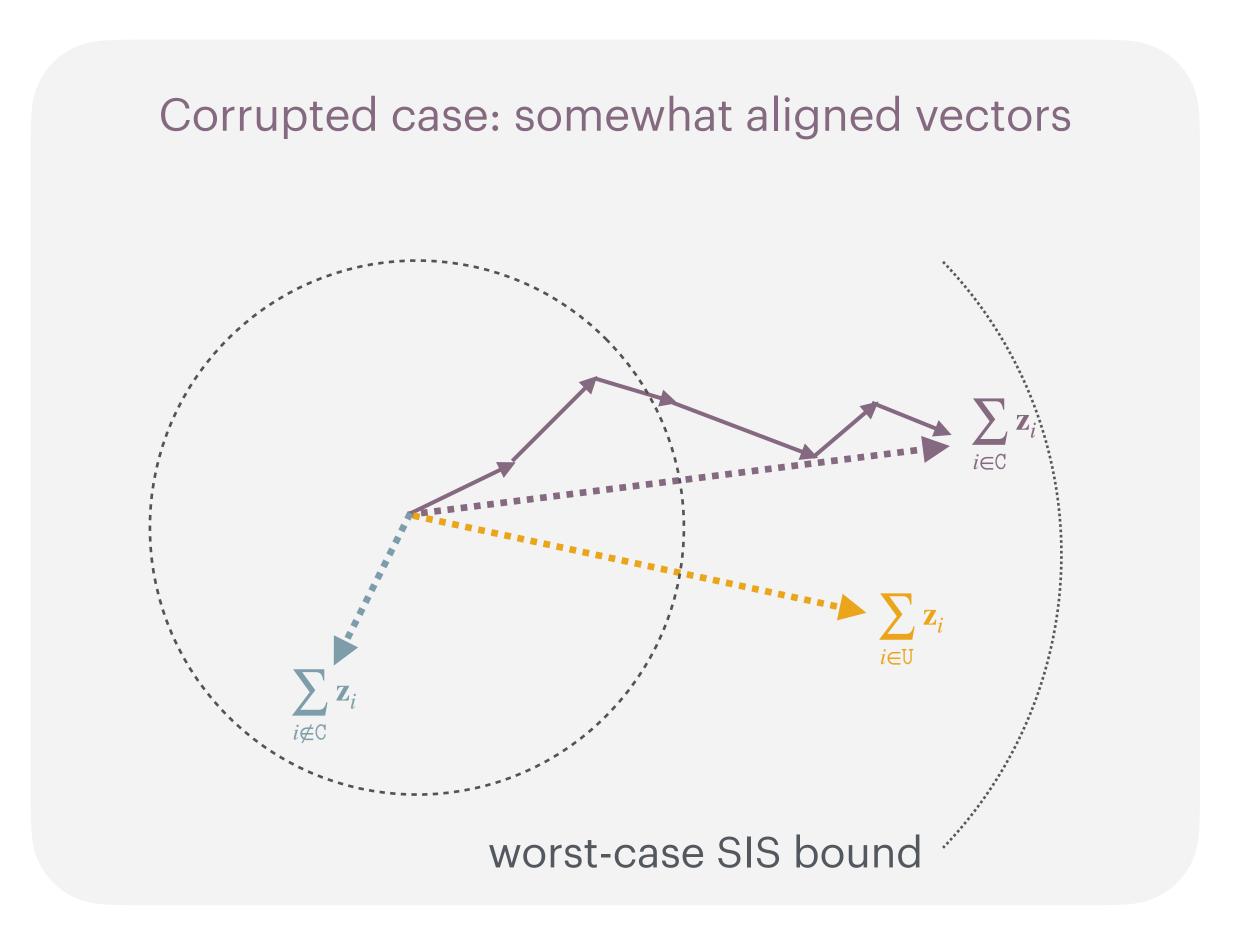
align their \mathbf{z}_i 's.

(what SIS bound must cover)

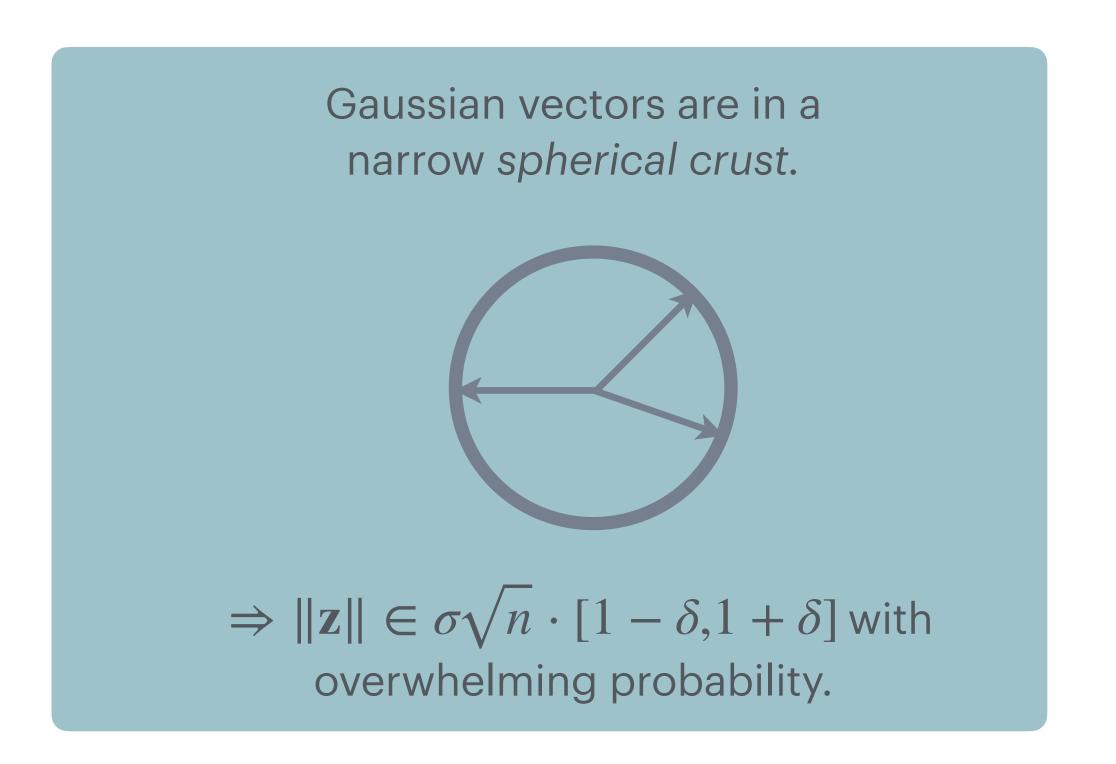
How malicious users can break it

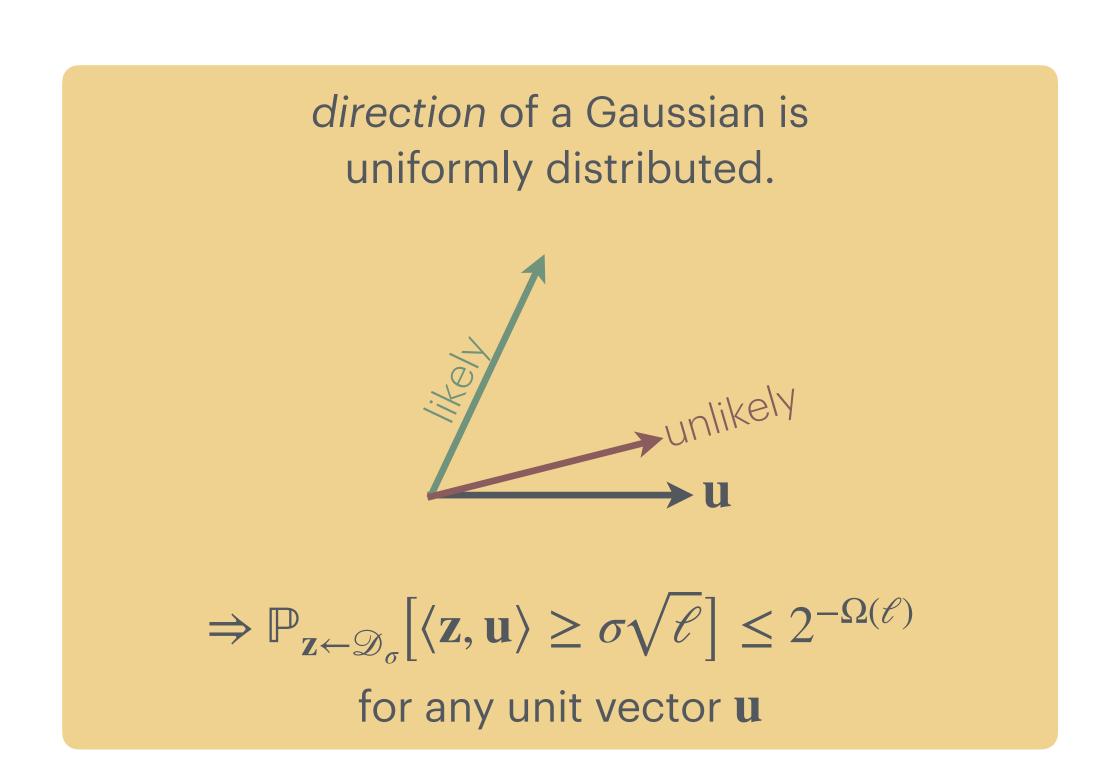
idea: a subset \mathbf{C} of malicious users collude >> can pass PartialVerify, but fail the global one





What can we say about honest vectors?



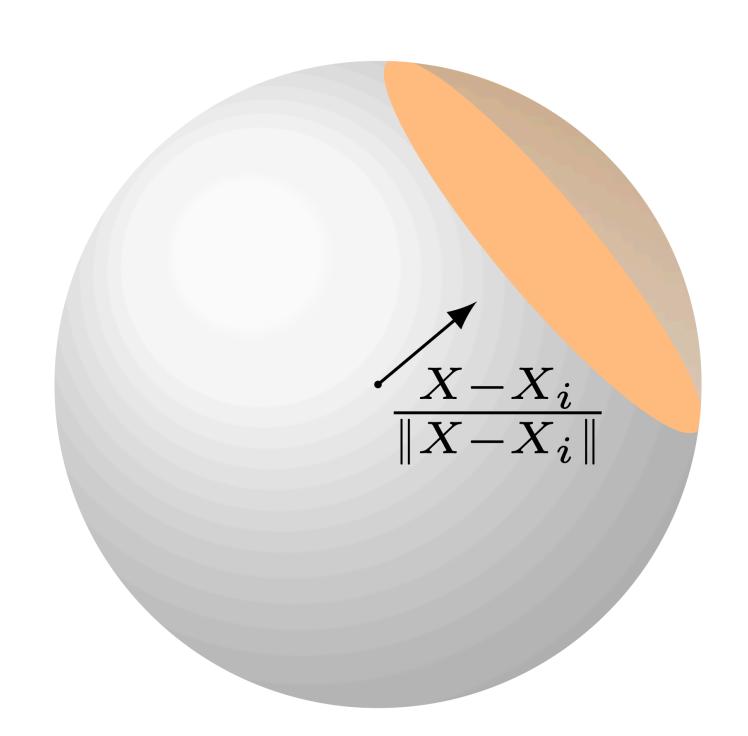


honest signatures : $\|\mathbf{z}_i\| \approx O(\sigma \sqrt{n})$ and $\|\sum_{\mathbf{U}} \mathbf{z}_i\| \approx O(\sigma \sqrt{Nn})$ vector correlating too much with the final signature is likely to be corrupted

The D* test
$$N\sigma\sqrt{n}\cdot (1+o(1)) \longrightarrow N\sigma\sqrt{\rho n}\cdot (1+o(1))$$

D* identifier

- 1. $traitors = \emptyset$
- 2. For $i \in U$
- If $\|\mathbf{z}_i\| > (1+\delta)\sigma\sqrt{n}$, put user i in traitors
 Else if $\frac{\langle \mathbf{z}_i, \mathbf{z} \mathbf{z}_i \rangle}{\|\mathbf{z} \mathbf{z}_i\|} > \sigma\sqrt{\ell}$, put user i in traitors
- 3. Return traitors.



get 10-20 bits of security — for free

Beyond Raccoon: back to rejection sampling

signatures are too big for passing MLDSA verify —> add rejection

motto: "reject until the distribution of signatures is small enough"

Beyond Raccoon: back to rejection sampling

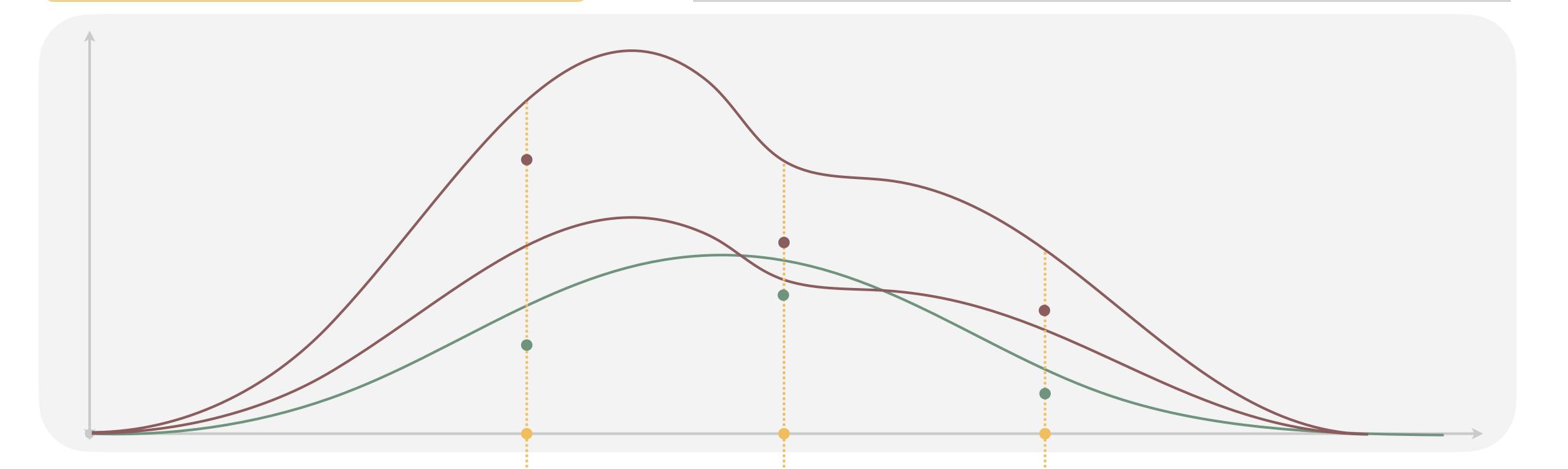
Rejection sampling

- $\mathbf{z} = \mathbf{v} + \mathbf{r}$
- $b \leftarrow \mathcal{B}\left(\max\left(\frac{\chi_{\mathbf{z}}(\mathbf{z})}{M\chi_{\mathbf{r}}(\mathbf{r})},1\right)\right)$
- If b=0 then $\mathbf{z}=\bot$
- Return z

Start from ${\bf v}$, add mask ${\bf r} \sim \chi_{{\bf r}}$, targeting $\chi_{{\bf z}}$

$$\text{Rej}(\mathbf{v}, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M) \sim (\chi_{\mathbf{z}} | \mathcal{B}(1/M))$$

 \rightarrow distribution of **z** is *independent* of the secret value **v**



$$Keygen() \rightarrow sk, vk$$

 sk_2

Sign

• $vk = A \cdot sk$, for short sk

 sk_1

 sk_3

Sign

- Sample a short ${f r}_1$
- $\mathbf{w}_1 = A \cdot \mathbf{r}_1$
- $c = Hash(m, w_1 + w_2 + w_3)$

Rejection sampling

Sign

$$\mathbf{z}_1 = \text{Rej}(c \cdot \text{sk}_1, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_1)$$

- Sample a short ${f r}_2$
- $\mathbf{w}_2 = A \cdot \mathbf{r}_2$
- $c = Hash(m, w_1 + w_2 + w_3)$

Rejection sampling

$$\mathbf{z}_2 = \text{Rej}(c \cdot \text{sk}_2, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_2)$$

- Sample a short ${f r}_3$
- $\mathbf{w}_3 = A \cdot \mathbf{r}_3$
- $c = Hash(m, w_1 + w_2 + w_3)$

Rejection sampling

$$\mathbf{z}_3 = \text{Rej}(c \cdot \text{sk}_3, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_3)$$

Combine

• Output $(c, z_1 + z_2 + z_3)$

$$Keygen() \rightarrow sk, vk$$

• $vk = A \cdot sk$, for short sk

 sk_1

$$sk_2$$

 sk_3

Sign

- Sample a short ${\bf r}_1$
- $\mathbf{w}_1 = A \cdot \mathbf{r}_1$
- $c = Hash(m, w_1 + w_2 + w_3)$

Rejection sampling

$$\mathbf{z}_1 = \text{Rej}(c \cdot \text{sk}_1, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_1)$$

Sign

- Sample a short ${f r}_2$
- $\mathbf{w}_2 = A \cdot \mathbf{r}_2$
- $c = Hash(m, w_1 + w_2 + w_3)$

Rejection sampling

$$\mathbf{z}_2 = \text{Rej}(c \cdot \text{sk}_2, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_2)$$

Sign

- Sample a short ${f r}_3$
- $\mathbf{w}_3 = A \cdot \mathbf{r}_3$
- $c = Hash(m, w_1 + w_2 + w_3)$

Rejection sampling

$$\mathbf{z}_3 = \text{Rej}(c \cdot \text{sk}_3, \chi_{\mathbf{r}}, \chi_{\mathbf{z}}, M; \mathbf{r}_3)$$

Combine

- if $\mathbf{z}_1 + \mathbf{z}_2 + \mathbf{z}_3$ too large, reject
- Output $(c, z_1 + z_2 + z_3)$

Beyond Raccoon: back to rejection sampling

signatures are too big for passing MLDSA verify —> add rejection

⇒ Needs to carefully control the parameters of the rejection

✓ Works!

X Can't scale beyond 6 users with the current technology

Quantitatively: ThMLDSA

Needs a few more tricks to get under MLDSA verification

- Unbalanced rejection sampling on hyperballs
- Parallel repetitions

scales ... quite badly
But ... is compatible with the standard ML-DSA!

- 1st round can be done offline (independent of the message)
- An existing MLDSA key can be shared (amounts to sample a sharing of zero)
- Compatible but not indistinguishable: the distribution of signature is not the same same as the original MLDSA

Communication cost for Th-MLDSA at N parties with threshold T

N\T	2	3	4	5	6
2	10.5 kB				
3	15.8 kB	$21.0\mathrm{kB}$			
4	15.8 kB	$36.8\mathrm{kB}$	$42.0\mathrm{kB}$		
5	15.8 kB	$73.5\mathrm{kB}$	$157.4\mathrm{kB}$	$84.0\mathrm{kB}$	
6	21.0 kB	99.8 kB	388.4 kB	524.8 kB	194.2 kB

Timing for Th-MLDSA on a MacBook M3

Verify (ms)	Sign+Combine (ms)	KeyGen (ms)	(T, N)		
Threshold ML-DSA					
	0.6810	0.3669	(3,3)		
	0.4570	0.1709	(2,4)		
	1.0961	0.2062	(3,4)		
	1.3672	0.1655	(4,4)		
0.0306	2.2263	0.2870	(3,5)		
	4.9832	0.2940	(4,5)		
	2.8453	0.1956	(5,5)		
	12.1949	0.5016	(4,6)		
	7.6784	0.2181	(6,6)		