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Abstract. Fast Fully Homomorphic Encryption scheme over the Torus
(TFHE) is one of the fastest homomorphic encryption scheme based on
the Learning with Errors (LWE) problem. In this paper, we investigate
the actual security level of TFHE. To do so, we improve the dual lat-
tice attack used in the original security estimate of the scheme. More
precisely, we use the dual attack together with a continuous relaxation
of lazy modulus switching technique on a projected sublattice, allowing
to generate instances of the LWE problem of slightly bigger noise which
correspond to a fraction of the secret key. Then, we search for this re-
maining part of the secret key by computing the corresponding noise for
each candidate using the constructed LWE samples. As the TFHE keys
are binary vectors, we can perform the search step very efficiently by ex-
ploiting the recursive structure of this search space. This approach offers
a trade-off between the cost of lattice reduction and the complexity of
the search part which allows to speed up the attack.
We provide an estimate of the complexity of our method for various
parameters under three different cost models for lattice reduction and
show that security level of the TFHE scheme should be re-evaluated
according to the proposed improvement. Our estimates show that the
current security level of the TFHE scheme should be reduced by 27 to
49 bits, depending on the model used.

1 Introduction

Fully homomorphic encryption (FHE) allows performing arbitrary operations
on encrypted data without decrypting it. The first fully homomorphic encryp-
tion scheme was introduced by Gentry in 2009 [25]. Since that time many FHE
schemes were proposed, each offering new improvements (e.g. [10,16,20,21,24]).
In this paper, we are interested in evaluating bit-security of the Fast Fully Ho-
momorphic Encryption scheme over the Torus [17,18,19], which is currently the
FHE scheme with the fastest implementation that we are aware of.

Security of the TFHE scheme relies on the hardness of the Learning with Er-
rors (LWE) problem, which was first introduced by Regev [33] in 2005. LWE is
provably as hard as certain lattice approximation problems in the worst-case [11].
Since its introduction, the LWE problem has been a rich source of cryptographic
constructions. The original Regev’s work presents an LWE-based public-key en-
cryption scheme, but besides public key encryption, this problem allows building



feature-rich constructions like identity-based encryption [23] and fully homomor-
phic encryption [12].

The security of a cryptosystem, of course, depends on the complexity of the
most efficient known attack against it. In particular, to estimate the security of an
LWE-based construction, it is important to know which attack is the best for the
parameters used in the construction. It can be a difficult issue; indeed, the survey
of existing attacks against LWE given in [6] shows that no known attack would
be the best for all sets of LWE parameters. In the case of THFE, the authors
adapted and used the dual distinguishing lattice attack from [2],to evaluate the
security of their scheme. As it turns out, this leads to an overestimate of the
security of their THFE parameters.

1.1 Our contribution.

In this work, we generalize the dual lattice attack which is currently used to
evaluate the security of the TFHE scheme. First, we present a complete and
detailed analysis of the standard dual lattice attack1 on LWE from [19]. Then,
we show that applying the dual attack to a projected sublattice and combining
it with the search for a fraction of the key can yield a more efficient attack.

More precisely, our attack starts by applying lattice reduction to a projected
sublattice in the same way it is applied to the whole lattice in the dual attack
with lazy modulus switching. This way we generate LWE instances with bigger
noise but in smaller dimension, corresponding to a part of the secret key. Then,
the freshly obtained instances are used to recover the remaining fraction of the
secret key. For each candidate for this missing part, we compute the noise vector
corresponding to the LWE instances obtained at the previous step. This allows
performing a majority voting to discriminate the most likely candidates. As the
TFHE scheme uses binary vectors for keys, this step boils down to computing a
product of a matrix composed of the LWE samples with the matrix composed
of all binary strings of length equal to the dimension of the part of the secret
key that we are searching for. We show that this computation can be performed
efficiently thanks to the recursive structure of the corresponding search space.
The number of bits of the secret key that the attack aims to guess is an additional
parameter for tuning the complexity of the attack. Hence, this hybrid approach
offers a trade-off between the quality of lattice reduction in the dual attack part
and the time spent in the exhaustive search part. Together with the efficient
computation of the noise for each candidate, the optimal parameters for this
trade-off gives an asymptotic improvement of the whole complexity.

We estimate the complexity of both attacks for a large set of various LWE
parameters and particularly for the parameters of TFHE. In order to evaluate the
cost of the lattice part of the attacks, we use three different models of behavior
of lattice reduction algorithms. See Section 2.3 for the description of the models

1 We shall remark that this attack is slightly more subtle than the classical dual lattice
attack, as it encompasses a continuous relaxation of the lazy modulus switching
technique of [2].
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used. For all the models our attack significantly outperforms the attack used
before. Table 1 presents the results of our estimates for the parameters of TFHE.

Table 1: Security of the parameters of TFHE scheme. λ denotes bit-security,
"switching key" and "bootstrapping key" denote two different sets of parameters
used in TFHE.

BKZ model switching key bootstrapping key

delta-squared
attack λ

dual 169
our attack 119

attack λ

dual 204
our attack 159

sieving
dual 135

our attack 114
dual 144

our attack 132

enumeration
dual 195

our attack 136
dual 230

our attack 179

1.2 Related work.

The survey [6] outlines three strategies for attacks against LWE: exhaustive
search, BKW algorithm [3,9] and lattice reduction. Lattice attacks against LWE
can be separated into three categories depending on the lattice used: distin-
guishing dual attacks [2], decoding (primal) attacks [30, 31], and solving LWE
by reducing it to unique Shortest Vector Problem [5].

The idea of hybrid lattice reduction attack was introduced by Howgrave–
Graham in [27]. He proposed to combine a meet-in-the-middle attack with lattice
reduction to attack NTRUEncrypt. Then, Buchmann et al. adapted Howgrave–
Graham’s attack to the settings of LWE with binary error [13] and showed that
the hybrid attack outperforms existing algorithms for some sets of parameters.
This attack uses the decoding (primal) strategy for the lattice reduction part.
Following these two works, Wunderer have provided an improved analysis of the
hybrid decoding lattice attack and meet-in-the-middle attack and re-estimated
security of several LWE and NTRU based cryptosystems in [36]. Also, very
recently, a similar combination of primal lattice attack and meet-in-the-middle
attack was applied to LWE with ternary and sparse secret [35]. They show that
the hybrid attack can also outperform other attacks in case of ternary and sparse
secrets for parameters typical for FHE schemes.

Outline. This paper is organized as follows. In Section 2, we provide back-
ground. In Section 3, we revisit the dual lattice attack which is currently used
to estimate the actual security level of TFHE. In Section 4, we describe our

3



hybrid dual lattice attack. In Section 5, we compare the complexities of two at-
tacks, revisit security estimate of TFHE scheme and provide some experimental
evidence.

2 Background

We use column notation for vectors. We use bold lower-case letters to denote
vectors (e.g. x) and bold upper-case letters to denote matrices (e.g. A). For
a vector x, xt denotes the transpose of x. Base-2 logarithm is denoted as log,
natural logarithm is denoted as ln. We denote the set of real numbers modulo
1 as the torus T. For a finite set S, we denote by U(S) the discrete uniform
distribution on S. For any compact set S ⊂ Rn, uniform distribution over S is
denoted as U(S). When S is not specified, U denotes uniform distribution over
(−0.5; 0.5).

2.1 LWE problem.

Abstractly, all operations of the TFHE scheme are defined on the real torus
T, and to estimate the security of the scheme it is convenient to consider a
scale-invariant version of LWE problem.

Definition 1 (Learning with Errors, [11, Definition 2.11]). Let n > 1,
s ∈ Zn, ξ be a distribution over R and S be distribution over Zn. We define the
LWEs,ξ distribution as the distribution over Tn×T obtained by sampling a from
U(Tn), sampling e from ξ and returning (a,ats+ e).

Decision-LWE: distinguish, given arbitrarily many samples, between U(Tn × T)
and LWEs,ξ distribution for a fixed s sampled from S.

Search-LWE: given arbitrarily many samples from LWEs,ξ distribution with
fixed s← S, recover s.

To complete the description of the LWE problem we need to choose error dis-
tribution ξ and distribution of the secret key S. Following the description of
the TFHE scheme, we choose S to be U({0, 1}n) and ξ to be centered continu-
ous Gaussian distribution, that is, we consider binary LWE problem. In [11] it
is shown that LWE with binary secret remains hard. Further LWEs,σ distribu-
tion denotes LWEs,ξ distribution for some fixed s← {0, 1}n and where ξ is the
Gaussian distribution with mean 0 and standard deviation σ.

2.2 Lattices

A lattice Λ is a discrete subgroup of Rd. A lattice Λ can be generated by integer
linear combinations of vectors of its basis B = {b1, . . . ,bd} ⊂ Rd:

Λ = L(B) := Zb1 + . . .Zbd.

Bases are not unique, one lattice basis may be transformed into another one
by applying an arbitrary unimodular transformation. The volume of the lat-
tice vol(Λ) is equal to the square root of the determinant of the Gram matrix
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BtB: vol(Λ) =
√
det(BtB). For every lattice Λ we denote the length of its

shortest non-zero vector as λ1(Λ). Minkowski’s theorem states that λ1(Λ) 6√
γn · vol(Λ)1/n for any d-dimensional lattice Λ, where γd < d is d-dimensional

Hermite’s constant. The problem of finding the shortest non-zero lattice vector
is called the Shortest Vector Problem(SVP). It is known to be NP-hard under
randomized reduction [1].

2.3 Lattice reduction

A lattice reduction algorithm is an algorithm which, given as input some basis
of the lattice, finds a basis that consists of relatively short and nearly orthogonal
vectors. The quality of the basis produced by lattice reduction algorithms is

usually measured by the Hermite factor δ =
‖b1‖

det(Λ)1/d
, where b1 is the first

vector of the outputted basis. Hermite factors bigger than
(

4
3

)n/4
can be reached

in polynomial time by the so-called LLL algorithm [29]. In order to obtain smaller
Hermite factors, blockwise lattice reduction algorithms, like BKZ-2.0 [15] or D-
BKZ [32], are used. The BKZ algorithm takes as input a basis of dimension d
and proceeds by solving SVP on lattices of dimension β < d using sieving [8] or
enumeration [22]. The quality of the output of BKZ depends on the blocksize β.
In [26] it is shown that after a polynomial number of calls to SVP oracle, the
BKZ algorithm with blocksize β produces a basis B that achieves the following
bound:

‖b1‖ 6 2γ
d−1

2(β−1)
+ 3

2

β · vol(B)1/d.

However, up to our knowledge, there is no closed formula that tightly connects
the quality and complexity of the BKZ algorithm. In this work, we use experi-
mentally obtained models from [3, 4] in order to estimate the running time and
quality of the output of lattice reduction. They are based on the following two
assumptions on the quality and shape of the output of BKZ. The first assump-
tion states that the BKZ algorithm outputs vectors with balanced coordinates,
while the second assumption connects Hermite factor δ and chosen blocksize β.

Assumption 1 Given as input basis B of d-dimensional lattice Λ , BKZ outputs
a vector of norm close to δd ·det(Λ)1/d with balanced coordinates. Each coordinate
of produced vector follows the distribution that can be approximated by Gaussian
with mean 0 and standard deviation δd det(Λ)1/d/

√
d.

Assumption 2 BKZ with blocksize β achieves Hermite factor

δ =
( β

2πe
(πβ)1/β

) 1
2(β−1)

.

This assumption is experimentally verified in [14].
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BKZ cost models. To estimate the running time of BKZ we use three different
models. The first model is an extrapolation by Albrecht [3] et al. of the Liu–
Nguyen datasets [31]. According to that model the logarithm of the running time
of BKZ-2.0 (expressed in bit operations) is a quadratic function of log(δ)−1:

log(T (BKZδ)) =
0.009

log(δ)2
− 27.

We further refer to this model as the delta-squared model. The model was used
in [19] to estimate the security of TFHE.

Another cost model [4] assumes that the running time of BKZ with blocksize
β for d-dimensional basis is T (BKZβ,d) = 8d · T (SVPβ), where T (SVPβ) is the
running time of SVP oracle in dimension β. For SVP oracle we use the following
two widely used models:

Sieving model: T (SVPβ) = 20.292β+16.4,
Enumeration model: T (SVPβ) = 20.187β log(β)−1.019β+16.1.

2.4 Modular Gaussian distribution [19, Section 2.1].

Let σ > 0. For all x ∈ R the density of centered Gaussian distribution of standard
deviation σ is defined as ρσ(x) = 1√

2πσ
exp

(
− x2

2σ2

)
. We define the distribution

that is obtained by sampling a centered Gaussian distribution of standard de-
viation σ and reducing it modulo 1 as the modular Gaussian distribution of
parameter σ and denote it as Gσ.

Its support is
(
− 1

2 ;
1
2

)
and the probability density function is given by the

absolutely convergent series:

gσ(x) =
∑
k∈Z

ρσ(x+ k).

For big values of σ, the sum that defines the density of modular Gaussian
can be closely approximated.

Lemma 1. As σ →∞, gσ(x) = 1 + 2e−2π
2σ2

cos(2πx) +O(e−8π
2σ2

).

Proof. The Fourier transform of the Gaussian function ρσ,m(x) = 1√
2πσ

e−
(x+m)2

2σ2

is given by ρ̂σ,m(y) = e−2π
2σ2m2+2πimx. Then, using the Poisson summation

formula, we obtain:

gσ(x) =
1√
2πσ

∑
k∈Z

e−
(k+x)2

2σ2 = 1 + 2
∑
k>0

e−2π
2σ2k2 cos(2πkx) =

1 + 2e−2π
2σ2

cos(2πx) +O(e−8π
2σ2

).

(1)
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2.5 Berry-Esseen inequality.

The Berry-Esseen inequality shows how closely the distribution of the sum of
independent random variables can be approximated by a Gaussian distribution.

Theorem 1. Let X1, . . . , Xn be independent random variables such that for all
i ∈ {1, . . . , n} E{Xi} = 0, E{X2

i } = σ2
i > 0, and E{|Xi|3} = ρi < ∞. Denote

the normalized sum
n∑
i=1

Xi√
n∑
i=1

σ2
i

as Sn. Also denote Fn the cumulative distribution function of Sn, and denote Φ
the cumulative distribution function of standard normal distribution. Then there
exists a constant C0 such that

sup
x∈R
|Fn(x)− Φ(x)| 6 C0

n∑
i=1

ρi( n∑
i=1

σ2
i

)3/2 .
We use the Berry-Esseen inequality in order to estimate how closely the

distribution that we obtain after the lattice reduction step of the dual attack
can be approximated by the discrete Gaussian distribution (see Lemma 5). The
Berry-Esseen inequality requires a finite third absolute moment of the random
variables. In the proof of Lemma 5, we need the third absolute moment of a
Gaussian distribution.

Lemma 2. Let σ > 0. Let X be a random variable of a Gaussian distribution
with mean 0 and standard deviation σ2. Then, E{|X|3} = 2

√
2
πσ

3.

Proof. Classically we have:

E{|X|3} = 2 · 1√
2πσ

∞∫
0

x3e−
x2

2σ2 dx = 2

√
2

π
σ3.

2.6 Distinguishing distributions.

Let P0 and P1 denote two probability distributions with density functions p0
and p1 respectively. A distinguisher D is a deterministic algorithm that, given
as input a single point x from P0 or P1, outputs a guess of the underlying
distribution of x. Let t be some constant. The following distinguisher is called
the likelihood-ratio distinguisher for P0 and P1:

Dt(x) =

1, if
p1(x)

p0(x)
> t,

0, otherwise;

7



t is called the threshold of Dt. The following lemma describes the optimal dis-
tinguisher for two probability distributions.
Lemma 3 ( [28, Problem 3.10]). Let t > 0 be some fixed constant. Let Dt

be a likelihood-ratio distinguisher for the distributions P0 and P1. Assume that
the probabilities that the distinguisher gets as input a point from P0 or P1 are
equal to π0 and π1 = 1− π0 respectively. Then the probability of an error of the
distinguisher is

perror = π0 · P
{p1(x)
p0(x)

> t
∣∣∣x ∼ P0

}
+ π1 · P

{p1(x)
p0(x)

< t
∣∣∣x ∼ P1

}
.

Probability perror is minimized when t = π0/π1.
In this paper, we are interested in the following problem. Suppose that we are

given a sample of N points sampled independently from either uniform or modu-
lar Gaussian distribution. The goal is to guess the distribution. The optimal way
to do it is to use Lemma 3 with P0 = UN and P1 = GNσ . But finding the threshold
for the optimal distinguisher requires computing the likelihood function for GNσ ,
which is rather cumbersome. Instead, for distinguishing the distributions we use
the following slightly less efficient but much more simple procedure. First, we
construct a distinguisher that, given one point from either uniform or modular
Gaussian distribution, guesses the distribution with symmetric error probability.
That is, the probability of error is the same independently of the distribution of
the input point. Then, we apply the symmetric distinguisher to each point from
the sample. The answer given by the distinguisher at the majority of points is
our final guess for the distribution.

In the following paragraph, we recall how the probability of the correct guess
of the majority voting depends on the size of the sample.

Amplification of distinguisher’s bias through voting. Let b ∈ {0, 1}
be a secret bit and let ε ∈ (0; 1/2) be a fixed constant. Assume that we have an
access to an oracle that outputs a correct guess for the secret bit with probability
1
2 + ε. The goal is to guess the value of the bit b with high probability. That can
be done by querying the oracle k times and choosing the value that occurs at the
majority of oracle’s answers. The following lemma says that taking k = O(ε−2)
is enough to make the probability of successful guess be arbitrarily close to 1.
Lemma 4. Let X1, . . . , Xk be independent Bernoulli random variables each hav-
ing probability 1

2 + ε of being equal to 1. Then

P
{ k∑
i=1

Xi >
k

2

}
> 1− 1

2
(1− 4ε2)k/2.

Proof of Lemma 4 can be found in [34].
Remark. Even though the distinguisher that we use is suboptimal, for the case

of uniform and modular Gaussian distributions, it is quite close to the optimal
distinguisher. In Section 3.2 we show that the distinguishing advantage of our
symmetric one point distinguisher is asymptotically close to the distinguishing
advantage of the optimal one (see Lemma 7).

8



3 Dual distinguishing attack against LWE.

In this section, we recall the distinguishing dual attack against LWE described
in [19]. Let s ∈ {0, 1}n be a secret vector and let α > 0 be a fixed constant.
The attack takes as input m samples (a1, b1), . . . , (am, bm) ∈ Tn+1 × T which
are either all from LWEs,α distribution or all from U(Tn × T), and guesses the
input distribution.

We can write input samples in a matrix form:

A := (a1, . . . ,am) ∈ Tn×m, b = (b1, . . . , bm)t ∈ Tm,

if input samples are from LWEs,α distribution:

b = Ats+ e mod 1.

In order to distinguish two distributions, the attack searches for a short
vector v = (v1, . . . , vm)t ∈ Zm such that linear combination of the left parts of
the inputs samples defined by v

x :=

m∑
i=1

viai = Av mod 1.

is also a short vector. If the input was from LWE distribution, then the corre-
sponding linear combination of the right parts of the input samples is also small
as a sum of two relatively small numbers:

vtb = vt(Ats+ e) = xts+ vte mod 1. (2)

On the other hand, if the input is uniformly distributed, then independently
of the choice of the non zero vector v, the product v ·b mod 1 has uniform dis-
tribution on (−1/2; 1/2). Recovering a suitable v turns decisional-LWE problem
into an easier problem of distinguishing two distributions on T.

This section is organized in the following way. First, in Section 3.1 we describe
how a suitable vector v can be recovered by lattice reduction and analyze the
distribution of vtb. Then, in Section 3.2, we estimate the complexity of distin-
guishing two distributions on T that we obtain after the lattice reduction part.
In Section 3.3, we show how the time complexity of the attack can be estimated.

3.1 Lattice reduction part

Finding a vector v such that both parts of the sum (2) are small when the input
has LWE distribution is equivalent to finding a short vector in the following
(m+ n)-dimensional lattice:

L(A) =

{(
Av mod 1

v

)
∈ Rm+n

∣∣∣∣∣∀v ∈ Zm
}
.

9



The lattice L(A) can be generated by the columns of the following matrix:

B =

(
In A

0m×n Im

)
∈ R(m+n)×(m+n)

A short vector in L(A) can be found by applying a lattice reduction algorithm
to basis B. We assume that lattice reduction produces a vector w = (x||v)t ∈
Zn+m with equidistributed coordinates. The goal is to minimize the product
vtb = xts + vte. The vectors e and s come from different distributions and
have different expected norms. For the TFHE scheme, the variance of e is much
smaller than the variance of s. To take it into the account, the attack introduces
an additional rescaling parameter q ∈ R>0. The first n rows of the matrix B are
multiplied by q, the last m rows are multiplied by q−n/m. This transformation
doesn’t change the determinant of the matrix. A basis Bq of the transformed
lattice is given by

Bq =

(
qIn qA
0m×n q−n/mIm

)
∈ R(m+n)×(m+n).

We apply a lattice reduction algorithm to Bq. Denote the first vector of the
reduced basis as wq. By taking last m coordinates of wq and multiplying them
by qn/m we recover the desired vector v. That part of the attack is summarized
in Algorithm 1.

Algorithm 1: Transform m LWE samples to one sample from modular
Gaussian distribution

input : A ∈ Tn×m, b ∈ Tm, S > 0, α > 0, δ ∈ (1; 1.1)
output: x ∈ T

1 computeV(A, S, α, δ):

2 q :=
(
S
α

) m
n+m

3 Bq :=

(
qIn qA

0m×n q−n/mIm

)
∈ R(m+n)×(m+n)

4 wq ← BKZδ(Bq)

5 v := qn/m · (wqn+1, . . . wqn+m)t

6 return (v)

7 LWEtoModGaussian(A, b, S, α, δ):
8 v← computeV(A, S, α, δ)
9 return vtb mod 1

The following lemma describes the distribution of the output of Algorithm 1
under Assumption 1 that BKZ outputs vectors with balanced coordinates.

Lemma 5 (see [19, Section 7]). Let α > 0 and S ∈ (0; 1) be fixed constants,
n ∈ Z>0. Let s ∈ {0, 1}n be a binary vector such that all bits of s are sampled in-
dependently from Bernoulli distribution with parameter S2: for all i ∈ {1, . . . , n}:
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P{si = 1} = S2, P{si = 0} = 1 − S2. Suppose that Assumption 1 holds and let
δ > 0 be the quality of the output of BKZ algorithm. Then, given as input
m =

√
n · ln(S/α)ln(δ) − n samples from LWEs,α distribution, Algorithm 1 outputs

a random variable x with distribution that can be approximated by a Gaussian
distribution with mean 0 and standard deviation σ

σ = α · exp
(
2
√
n ln(S/α) ln(δ)

)
.

Denote as Fx the cumulative distribution function of x and denote as Φσ the
cumulative distribution function of the Gaussian distribution with mean 0 and
standard deviation σ. Then, the distance between the two distributions can be
bounded:

sup
t∈R
|Fx(t)− Φσ(t)| = O

( 1√
S2(m+ n)

)
,

as n→∞.

Lemma 5 can be proved using the Berry-Esseen theorem. We give a proof
in Appendix A for completeness.

3.2 Distinguishing modular Gaussian and uniform distributions

In this section, we are estimating the complexity of distinguishing uniform and
modular Gaussian distributions. We assume that we are given as input N points
that are sampled independently all from the same distribution, and the goal is
to guess the underlying distribution. We use the following procedure, first, we
construct a distinguisher that, given as input one point from one of the two
distributions, outputs a correct guess of the distribution with probability p > 1

2 ,
then we run the distinguisher many times and output the result given at the
majority of trials.

One point distinguisher We start by constructing a single point distinguisher
for uniform and modular Gaussian distributions. We require that the probabil-
ity of error of the distinguisher is the same independently of the underlying
distribution of the input point.

Lemma 6. Let σ > 0 be a fixed constant and let t ∈ (0; 0.5) be the solution of
the following equation

t∫
0

gσ(x)dx =
1

2
− t. (3)

Assume that Algorithm 2 is given as input one point which has uniform distri-
bution U or modular Gaussian distribution Gσ. Then, Algorithm 2 guesses the
distribution correctly with probability 1− 2t independently of the distribution of
the input. The time complexity of the algorithm is linear in the size of the input.
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Algorithm 2: Distinguish U and Gσ
input : x ∈ (− 1

2
; 1
2
), t ∈ (0; 1

2
)

output: G or U — guess for the
distribution of the input.

1 onePointDistinguisher(x, t):
2 if (|x| 6 t) then
3 return G
4 else
5 return U

t t
x

g

Fig. 1: Distinguish U and Gσ

Fig. 2: Distinguisher Dη for the uniform and the modular Gaussian distributions.
In Figure 1, the blue line denotes the density of the modular Gaussian distribu-
tion, the dashed blue line denotes the threshold η of the distinguisher. The green
region corresponds to the values of x for which Dη decides that the distribution
of the input is the modular Gaussian, the yellow region corresponds to the values
of x for which Dη decides that the distribution is uniform.

Proof. Let x be an input of Algorithm 2. The ratio of density functions for
modular Gaussian and uniform distributions is gσ(x)

1 = gσ(x), so the likelihood-
ratio distinguisher in that case just checks whether gσ(x) is bigger then some
threshold η. Because of the shape of density function gσ, it is equivalent to
choosing Gσ when |x| 6 t = g−1σ (η) and choosing U otherwise (see Figure 1).
The value t is chosen to obtain an equal probability of error independently of
the distribution of the input, that is

P{|x| > t |x ∼ Gσ} = P{|x| 6 t |x ∼ U}.

This is equivalent to finding t that satisfies Equation (3). The left part of Equa-
tion (3) is an increasing function on the interval (0; 1/2) that has range (0; 1/2).
Since the right part of Equation (3) is a decreasing linear function on (0; 1/2)
with the same range as the right part, Equation (3) has a unique solution on
the interval (0; 1/2). It can be found numerically using the bisection method
(see [7, Chapter 2.1]).

The probability that the distinguisher outputs a wrong guess is

P{|x| 6 t |x ∼ U} = 2t.

The threshold t for the distinguisher described in Algorithm 2 can be com-
puted numerically by solving Equation (3). For large values of the parameter σ
of the modular Gaussian distribution, the computation of t can be simplified by
replacing the density of the modular Gaussian distribution by its approximation.

Lemma 7. Let σ > 0 be the parameter of modular Gaussian distribution and let
t(σ) be the value of the threshold for the distinguisher described in Algorithm 2.
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Then, as σ →∞,

t(σ) =
1

4
− e−2π

2σ2

2π
+O(e−6π

2σ2

).

Proof. By Lemma 6, the optimal value of t is the solution of Equation (3) which
belongs to an interval (0; 0.5). For big values of σ, the integral of the density of
a modular Gaussian distribution Gσ can be approximated using Lemma 1:

t∫
0

gσ(x)dx =

t∫
0

(
1 + 2e−2π

2σ2 cos(2πx) +O(e−8π
2σ2

)
)
dx

= t+
1

π
· e−2π

2σ2

sin(2πt) + t ·O(e−8π
2σ2

).

After applying this approximation to Equation (3) we obtain:

t =
1

4
− 1

2π
· e−2π

2σ2

sin(2πt) +O(e−8π
2σ2

). (4)

From this equation it follows that t = 1
4 + O(e−2π

2σ2

). Then sin(2πt) can also
be approximated:

sin(2πt) = sin
(π
2
+O(e−2π

2σ2

)
)
= cos(O(e−2π

2σ2

)) = 1−O(e−4π
2σ2

).

By combining the approximation for sin(2πt) and Equation (4) we obtain an
approximation for the optimal value of t.

From Lemma 7 it follows that the distinguishing advantage of the symmetric
distinguisher is O(e−2π

2σ2

) when σ → ∞, which, ignoring constants, coincides
with the advantage of the distinguisher used in [19] (see [19, Section 7, Equation
(6)]).

By querying the one point distinguisher described in Algorithm 2 many times
we can amplify the probability of successful guess of the distribution.

The complexity of distinguishing uniform and modular Gaussian distribu-
tions is summarized in the following lemma.

Lemma 8. Let p ∈ (0; 1) be a fixed constant and let σ > 0 be a parameter of
the modular Gaussian distribution Gσ. Let ε = 1

2 − 2t, where t ∈ (0; 0.5) is the
solution of Equation (3) and let N be an integer number greater or equal than
− ln(2(1−p))

2 · 1ε2 . Then, Algorithm 3, given a sample X = (x1, . . . , xN ) either from
distribution U or from Gσ, guesses the distribution correctly with probability at
least p in time O(N).

Proof. Algorithm 2 outputs the correct answer if one point distinguisher chooses
the correct distribution at least at N

2 trials out of N . By Lemma 6, one point
distinguisher guesses the distribution correctly with probability 1− 2t = 1

2 + ε.
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Algorithm 3: Distinguish uniform and modular Gaussian distributions
input : X = (x1, . . . , xN ) ∈ (−1/2; 1/2)N , σ > 0
output: G or U — guess for the distribution of the input.

1 DistinguishGU(X, σ):

2 t := solve(t+
t∫
0

gσ(x)dx = 1
2
), S := 0

3 for x ∈ X do
4 if onePointDistinguisher(x, t) = G then
5 S := S + 1

6 if (S > N/2) then
7 return G
8 else
9 return U

Then, by Lemma 4, the probability that one point distinguisher gives the right
answer at least N

2 times is at least

1− 1

2
(1− 4ε2)N/2 = 1− 1

2
(1− 4ε2)

1
4ε2
·
(
−ln(2(1−p))

)
−−−→
ε→0

p.

The algorithm performs N queries to the one point distinguisher. The time
complexity of the one point distinguisher is linear in size of the input, so the
time complexity of Algorithm 3 is O(N).

3.3 Complexity of the attack

The distinguishing attack is summarized in Algorithm 4. It takes as input m×N
samples from an unknown distribution, then transforms them into N samples
which have uniform distribution if the input of the attack was uniform and into
modular Gaussian distribution if the input was from LWE distribution. Then
attack guesses the distribution of obtained N samples using Algorithm 3 and
outputs the corresponding answer.

The following theorem states that the cost of the distinguishing attack can
be estimated by solving an optimization problem.

Theorem 2 (see [19, Section 7]). Let α > 0 and S ∈ (0; 1) be some fixed
constants, n ∈ Z>0. Let s ∈ {0, 1}n be a binary vector such that all bits of s are
sampled independently from a Bernoulli distribution with parameter S2. For any
σ > 0 let ε(σ) = 1

2−2t, where t ∈ (0; 0.5) is the solution of Equation (3). Suppose
that Assumption 1 holds. Then the time complexity of solving decision-LWEs,α

with probability of success p by distinguishing attack described in Algorithm 4 is

TTFHEattack = min
δ

(
− ln(2(1− p))

2
· 1

ε(σ)2
· T (BKZδ)

)
, (5)

where σ = α · exp
(
2
√
n ln(S/α) ln(δ)

)
.
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Algorithm 4: Dual distinguishing attack (adapted from [19, Section 7])
input : {(Ai,bi)}Ni=1, where ∀i Ai ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ ∈ (1; 1.1)
output: guess for the distribution of the input: Uniform or LWE distribution

1 DistinguishingAttack({Ai,bi}Ni=0, α, S, δ):
2 X := ∅
3 σ := α · exp

(
2
√
n ln(S/α) ln(δ)

)
4 for i ∈ {1, . . . , N} do
5 x← LWEtoModGaussian(Ai,bi, S, α, δ)
6 X ← X ∪ x
7 if (DistinguishGU(X,σ) = G) then
8 return LWE distribution
9 else

10 return Uniform

Proof. The cost of the attack is the cost of lattice reduction multiplied by the
number of samples N needed to distinguish uniform and modular Gaussian dis-
tributions with parameter σ:

T = N · T (BKZδ). (6)

By Lemma 8, the required number of samples N = − ln(2(1−p))
2 · 1

ε2 . The param-
eter of the discrete Gaussian distribution as a function of δ can be estimated
using Lemma 5. Then, the time complexity can be obtained by optimizing ex-
pression (6) as a function of δ.

4 Hybrid key recovery attack

In this section, we show how the dual distinguishing attack recalled in Section 3
can be hybridized with exhaustive search on a fraction of the secret vector to
obtain a continuum of more efficient key recovery attacks on the underlying LWE
problem. Let s ∈ {0, 1}n be a secret vector and let α > 0 be a fixed constant.
Our attack takes as input samples from LWE distribution of form

(A,b = Ats+ e mod 1) ∈ (Tn×m,Tm), (7)

where e ∈ Rm has centered Gaussian distribution with standard deviation α.
The attack divides the secret vector into two parts:

s = (s1||s2)t, s1 ∈ {0, 1}n1 , s2 ∈ {0, 1}n2 , n = n1 + n2.
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The matrix A is also separated into two parts correspondingly to the sepa-
ration of the secret s:

A =



a1,1 . . . a1,m
...

...
an1,1 . . . an1,m

an1+1,1 . . . an1+1,m

... . . .
...

an,1 . . . an,m


=

(
A1

A2

)
(8)

Then, Equation (7) can be rewritten as

At
1s1 +At

2s2 + e = b mod 1.

By applying lattice reduction to matrix A1 as described in Algorithm 1, we
recover a vector v such that vt(At

1s1+e) is small and it allows us to transforms
m input LWE samples (A,b) ∈ (Tn×m,Tm) into one new LWE sample (â, b̂) ∈
(Tn2 ,T) of smaller dimension and bigger noise:

vtAt
2︸ ︷︷ ︸

a

s2 + vt(At
1s1 + e)︸ ︷︷ ︸
ê

= vtb︸︷︷︸
b̂

mod 1. (9)

The resulting LWE sample in smaller dimension can be used to find s2. Let
x ∈ {0, 1}n2 be a guess for s2. If the guess is correct, then the difference

b̂− âtx = b̂− âts2 = (ê mod 1) ∼ Gσ (10)

is small.
If the guess is not correct and x 6= s2, then there exist some y 6= 0 such that

x = s2 − y. Then, we rewrite b̂− âtx in the following way:

b̂− âtx = (̂b− âts2) + âty = âty + ê.

We can consider (â, âty+ ê) as a sample from the LWE distribution that corre-
sponds to the secret y. Therefore, we may assume that if x 6= s2, the distribution
of b̂− âtx mod 1 is close to uniform, unless the decision-LWE is easy to solve.

In order to recover s2, the attack generates many LWE samples with reduced
dimension. Denote the number of generated samples as R and the generated sam-
ples in a matrix form as (Â, b̂) ∈ TR×d×TR. There are 2n2 possible candidates
for s2. For each candidate x ∈ {0, 1}n2 , the attack computes an R-dimensional
vector ex = b−Ats. The complexity of this computation for all the candidates is
essentially the complexity of multiplication of matrices Â and S2, where S2 is a
matrix whose columns are all binary vectors of dimension n2. Naively the matrix
multiplication requires performing O(n · 2n2 · R) operations, but, by exploiting
the recursive structure of S2, we can do it faster in time O(R · 2n2).

Then, for each candidate x for s2 the attack guesses whether the correspond-
ing vector ex is uniform or concentrated around zero distribution. The attack
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returns the only candidate x whose corresponding vector ex has concentrated
around zero distribution.

The rest of this section is organized as follows. First, we describe the auxiliary
algorithm for multiplying any matrix by the matrix of all binary vectors that
let us speed up the search for the part of the secret key, then, we evaluate the
complexity of our attack.

4.1 Algorithm for computing a product of any matrix with a matrix
of all binary vectors.

For any d ∈ Z>0, define a function bind : Z ∩ [0; 2d]→ {0, 1}d such that for any
positive integer k 6 2d, bind(k) is a d-dimensional binary vector, such that for
all i ∈ {1, . . . , d} the i-th coordinate of bind(k) is equal to the i-th bit of the
binary representation of k.

For any positive integer d denote as S(d) a matrix of all binary vectors of
dimension d written in the lexicographical order, that is, the i-th column of S(d)

is equal to bind(i). These matrices can be constructed recursively. For d = 1 it
is given by S(1) =

(
0 1
)
, and for any d > 1 the matrix S(d) can be constructed

by concatenating the two matrices S(d−1) and adding a row which consists of
2d−1 zeros followed by 2d−1 ones as the first row to the resulting matrix:

S(d) =

(
0 . . . 0 1 . . . 1
S(d−1) S(d−1)

)
. (11)

Let a = (a1, . . . , ad)
t be a d-dimensional vector. Our goal is to compute

the scalar products of a with each column of S(d). We can do it by using the
recursive structure of S(d). Assume that we know the desired scalar products for
a(d−1) = (a2, . . . , ad)

t and S(d−1) Then, using Equation (11), we get

atS(d) =
(
a1 at(d−1)

)
·
(
0 . . . 0 1 . . . 1
S(d−1) S(d−1)

)
=

(
at(d−1)S(d−1)(

a1 . . . a1
)t

+ at(d−1)S(d−1)

)
, (12)

that is, the resulting vector is the sum of the vector at(d−1)S(d−1) concatenated
with itself with the vector whose first 2d−1 coordinates are zeros and the last
2d−1 coordinates are all equal to a1. The approach is summarized in Algorithm 5.

Lemma 9. Let d be a positive integer number. Algorithm 5, given as input a
d-dimensional vector a, outputs the vector x of dimension 2d such that for all
i ∈ {1, . . . , 2d} xi = atbind(i). The time complexity of the algorithm is O(2d).

Proof. The correctness of the algorithm follows from the recursive structure of
the matrix S(d) (see Equations (11) and (12)). The algorithm performs only
additions of some coordinates of the vector a. At the i-th iteration of the cycle
(3-8) the algorithm performs 2d−i additions. Number of iterations is (d−1). The
overall number of additions is 2 + 22 + · · ·+ 2d−1 = 2d − 2.
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Algorithm 5: Compute a scalar product of a vector with all binary vectors
input : a = (a1, . . . , ad)

t

output: atS(d), where S(d) ∈ {0, 1}2
d×d is the matrix whose columns are all

binary vectors of dimension d written in the lexicographical order
1 computeScalarProductWithBinaryVectors(a):
2 x← (0, ad)

t

3 for i ∈ {d− 1, . . . , 1} do
4 y← x

5 for j ∈ {1, . . . , 2d−i} do
6 yj ← yj + ai
7 x′ ← x ∪ y
8 x← x′

9 return x

Corollary 1. Let A be a matrix with R rows and d columns. The product of A
and S(d) can be computed in time O(R · 2d).

Proof. In order to compute A · S(d) we need to compute the product of each of
the R rows of A with Sd. By Lemma 9 it can be done in O(2d) time. Then the
overall complexity of multiplying the matrices is O(R · 2d).

4.2 Complexity of the attack

The pseudo-code corresponding to the full attack is given in Algorithm 6.

Theorem 3. Let α > 0, p ∈ (0; 1), S ∈ (0; 1), and n ∈ Z>0 be fixed con-
stants. Let s ∈ {0, 1}n, σ > 0, and ε : R>0 → (0; 1/2) be as defined in Theo-
rem 2. Suppose that Assumption 1 holds. Then, the time complexity of solving
the search-LWEs,α problem with probability of success p by the attack described
in Algorithm 6 is

Tattack = min
δ,n2

(
1

ε(σ)2
·
(
2n2 + T (BKZδ)

)(
(n2 − 1) ln(2)− ln(ln(p−1))

))
. (13)

Proof. The attack can be divided into two steps: lattice reduction step and search
for the fraction of the secret key. At the first step attack takes R ×m LWEs,α

samples and transforms them into R LWEs2,σ samples such that s2 is a part of
the secret key s and the noise parameter σ is bigger than the noise parameter α
of the input. It requires R · T (BKZδ) time. Denote the matrix form of obtained
LWE samples as (Â, b̂) ∈ (Tn2×R,TR).

At the search step, the goal is to recover s2 using the obtained LWE samples.
For each of the candidates for s2 the attack computes the error vector that
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Algorithm 6: Hybrid key recovery attack
input : {(Ai,bi)}Ri=1, where ∀i Ai ∈ Tn×m, bi ∈ Tm, α > 0, S > 0, δ > 1,

n1 ∈ {2, . . . , n− 1}
output: s2 ∈ {0, 1}n−n1

1 recoverS({(Ai,bi)}Ri=1,α, S, δ, n1):
2 n2 ← (n− n1)

3 σ ← α · exp
(
2
√
n1 ln(S/α) ln(δ)

)
4 Â← ∅ , b̂← ∅

/* lattice reduction part */
5 for i ∈ {1, . . . , R} do
6 A← Ai, b← bi
7 (A1,A2)← splitMatrix(A, n1) . see Equation (8)
8 v← computeV(A1, S, α, δ) . Algorithm 1
9 Â← Â ∪ {A2v}, b̂← b̂ ∪ {vtb}

/* search for s2 */
10 S(n2) ←

matrix of all binary vectors of dimension n2 in lexicographical order
11 B̂← (b̂, . . . , b̂) ∈ TR×2n2

12 Ê← B̂− ÂtS(n2) mod 1 . see Corollary 1 and Algorithm 5
13 for i ∈ {1, . . . , 2n2} do
14 ê← Ê[i]

/* guess the distribution of e (see Algorithm 3) */
15 if (distinguishGU(ê, σ) = G) then
16 return S(n2)[i]

corresponds to R LWE samples obtained at the previous step. It is equivalent
to computing the following matrix expression:

Ê = B̂− ÂtS(n2) mod 1,

where S(n2) is a matrix composed of all binary vectors of length n2 written in
lexicographical order and B̂ ∈ TR×2n2 is a matrix composed of vector b̂ repeated
2n2 times. The complexity of computing that expression is dominated by the
complexity of computing the product of Ât ∈ TR×2n2 and S(n2). By Corollary 1,
it can be computed in O(R · 2n2) operations. Once the attack obtain an error
vector for each of the candidates, it guesses the distribution of each error vector
using Algorithm 3 and returns the candidate whose error vector has concentrated
around zero modular Gaussian distribution.

The time complexity of the attack is the sum of complexities of the two steps:

Tattack = R ·
(
2n2 + T (BKZδ)

)
. (14)

Now the goal is to evaluate the number of samples R needed to recover s2
with probability p. First, we compute the probability of the correct guess for
one candidate needed to achieve the probability p of the correct guess for all
candidates. Assume that the probability of the correct guess for one candidate
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is 1 − µ for some µ ∈ (0; 1) Then, the probability that the attack successfully
guesses s2 is at least (1− µ)2n2 . Let’s take µ =

c

2n2
for some c > 0. Then

lim
n2→∞

(1− µ)2
n2

= e−c

and to achieve success probability p we should take µ =
− ln(p)

2n2
.

Then, we estimate the sample size needed to achieve the probability (1− µ)
for a single candidate using Lemma 8. In order to achieve this probability of
success for one candidate, the size of the sample should be at least

R = − ln(2µ)

2ε(σ)2
=

ln(2)(n2 − 1)− ln(− ln(p))

2ε(σ)2
, (15)

where ε is the same as described in Lemma 8. By combining Equations (14)
and (15) we obtain the time complexity of the attack.

5 Bit-security estimation and experimental verification

We implement a python script that, given parameters of an LWE problem and
a BKZ cost model as an input, finds optimal parameters for the dual attack
(see Section 3) and for our attack (see Section 4). Using this script we evaluate
the computational cost of the dual attack and our attacks for a wide range of
LWE parameters and in particular for the parameters used in the TFHE scheme.
In this section, we report the results of our numerical estimation and show that
the security level of the TFHE scheme should be updated with regard to the
hybrid attack. We support our argument by an implementation working on a
small example.

5.1 Bit-security of LWE parameters

We numerically estimate the cost of solving LWE problem by the dual attack
and by our attack for all pairs of parameters (n, α) from the following set:
(n,− log(α)) ∈ {100, 125, . . . , 975} × {5, 6.25, . . . , 38.5}. In all cases, we take
S2 = 1/2, which corresponds to choosing the secret key uniformly random from
{0, 1}n as it is done in the TFHE scheme. For each attack, we consider three
BKZ cost models. For each case, we create a heatmap representing the cost of
the attack as a function of parameters n and α. The results obtained by using
the enumeration BKZ cost model are presented in Figure 3. The left heatmap
in Figure 3 represents the logarithm of the time complexity of the dual attack,
the right heatmap represents the logarithm of the time complexity of our at-
tack. Figure 3 shows that for the same sets of parameters the cost of our attack
is always less then or equal to the cost of the dual distinguishing attack and that
the difference between the costs of the attacks grows with the hardness of the
problem. We obtain similar pictures for the two other considered models. For
completeness, we present the heatmaps for the other models in Appendix B.
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Fig. 3: Comparison of costs of the attacks under the enumeration BKZ cost
model. n and α denote the dimension and the standard deviation of the noise of
LWE samples, TD denotes the time complexity of the dual distinguishing attack,
TK denotes the time complexity of our key recovery attack.

5.2 Application to TFHE scheme

The TFHE scheme uses the following two sets of parameters [19]: n = 500, α =
2.43 ·10−5 for switching key and n = 1024, α = 3.73 ·10−9 for bootstrapping key.
The security of the scheme is defined by the security of the switching key, which
is the weaker part. In Table 2 we present estimates of bit-security of switching
and bootstrapping keys according to both attacks under three different models
of the cost of BKZ. We also provide optimal parameters for the attacks.

In all cases, the cost of our attack is lower than the cost of the dual attack.
In addition, the lattice reduction part is always easier for our attack than for
the dual attack, because the required quality parameter of lattice reduction δ is
always bigger for our attack than for the dual attack. However, the difference of
the costs depends on the choice of the model: it is bigger for models that predict
higher complexity of BKZ. For example, for parameters of the switching key, the

21



Table 2: Security of TFHE scheme. λ denotes security in bits, δ and n1 are
optimal parameters for the attacks. "-" means that the distinguishing attack
doesn’t have parameter n1.

BKZ model switching key bootstrapping key

delta-squared
attack λ δ n1

dual 169 1.0052 -
our attack 119 1.0059 406

attack λ δ n1

dual 204 1.0046 -
our attack 159 1.0051 889

sieving
dual 135 1.0047 -

our attack 114 1.0056 405
dual 144 1.0043 -

our attack 132 1.0048 810

enumeration
dual 195 1.0051 -

our attack 136 1.0062 389
dual 230 1.0045 -

our attack 179 1.0052 868

difference under the sieving model is 11 bits while under enumeration model it
is 59 bits.

In Figure 8 we present estimation of bit-security of LWE parameters revisited
according to the combination of our attack and collision attack of time com-
plexity 2n/2. That is, Figure 8 presents the function min(TourAttack(n, α), 2

n/2),
where TourAttack(n, α) is the cost of our attack for parameters n and α. Figure 8
is obtained under the enumeration BKZ cost model. See Appendix B for other
models.

5.3 Experimental verification

In order to verify the correctness of our attack, we have implemented it on
small examples. Our implementation recovers 5 bits of a secret key for LWE
problems with the following two sets of parameters: (n, α) = (30, 2−8) and
(n, α) = (50, 2−8).

For implementation purposes, we rescaled all the elements defined over torus
T to integers modulo 232. For both examples, we use BKZ with blocksize 20,
which yields the quality of the lattice reduction around δ . 1.013. We compute
the values of parameters of the attack required to guess correctly 5 bits of the key
with probability 0.99 assuming that quality of the output of BKZ. The required
parameters for both experiments are summarized in Table 3.

The first experiment was repeated 20 times, the second – 10 times. For both
experiments, the last five bits of the key were successfully recovered at all at-
tempts.

The correctness of both attacks rely on assumptions made in Lemma 5 for
approximating the distribution of vt(Ats+e) mod 1 by modular Gaussian dis-
tribution Gσ. In order to verify these assumptions, while running both experi-
ments we have collected samples to check the distribution: each time when the
attack found correctly the last bits of the secret key s2, we collected the corre-
sponding ẽ = b̃ − ãts2 = vt(Ats1 + e). For the first experiment the size of the
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Fig. 4: Bit-security as a function of LWE parameters n and α assuming the
enumeration BKZ cost model. Here n denotes the dimension, α denotes the
standard deviation of the noise. The picture represents the security level λ of
LWE samples, λ = log(min(TourAttack(n, α), 2

n/2)). Numbered lines on the pic-
ture represent security levels. Star denotes current parameters of key switching
in the TFHE scheme.

Table 3: Parameters required for guessing 5 bits of the key with δ = 1.013. m is
the number of samples needed for one lattice reduction (19), σ is the parameter
of modular Gaussian distribution Gσ ( Lemma 5), R is the number of samples
needed to distinguish distributions Gσ and U (15).

(n,− log(α)) m σ R

(30,8) 76 0.0521 32
(50,8) 90 0.126 74

collected sample is 20 × R1 = 640, for the second experiment: 10 × R2 = 740.
The collected data is presented in Figure 5.

In Table 4 we compare theoretical predictions and estimations obtained from
the experiments for the parameters of modular Gaussian distribution Gσ. Exper-
imental estimations of mean and variance in both cases match closely theoretical
predictions.

6 Conclusion

In this work, we demonstrated that the dual lattice attack used to estimate the
security of the TFHE scheme can be improved by applying a hybrid approach
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Fig. 5: Distribution of ẽ = vt(Ats1 + e) mod 1.
Figure 3a represents data from the experiment with parameters (n, α) = (30, 2−8),
figure 3b – from the experiment with parameters (n, α) = (50, 2−8). Blue histograms
denote observed data, orange lines – theoretical predictions of the distribution.

Table 4: Estimated mean and variance. σ is the parameter of the modular Gaus-
sian distribution Gσ, Var(Gσ) is variance of G

(n, α) sample size σ Var(Gσ) estimated variance average of sample
(30, 2−8) 640 0.0521 0.002714 0.002619 -0.00207
(50, 2−8) 740 0.126 0.1587 0.14515 0.0064

consisting in a dual attack on a projected sublattice, lazy modulus switching, and
an efficient batch computation of the leaves of the enumeration tree, performed
using fast matrix multiplication to exploit the recursive structure of the space
we are searching in. This techniques offer an asymptotic speedup and allow
to re-evaluate the actual security level of the TFHE scheme. We estimate the
complexity of the proposed attack under several widely used BKZ cost models.
Even if it is still an open question to determine which model gives the most
accurate predictions of the behavior of lattice reduction, our results show that
the security claim of TFHE is largely overestimated, in any cost model for lattice
reduction. Therefore, the key size of the TFHE scheme should be significantly
increased, which would lead to non-negligible slowdowns.
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14. Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. Ph.D. thesis, Paris 7 (2013)

15. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security. pp. 1–20. Springer (2011)
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A Proof of Lemma 5.

Proof. Under Assumption 1, the coordinates of wq are independent and dis-
tributed according to the Gaussian distribution with expectation 0 and stan-
dard deviation δn+m/

√
n+m. Since wq = (q · x || q−n/m · v)t, the coordinates
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of vectors x and v also have centered Gaussian distribution, but with different
standard deviations. Let

σx =
1

q
· δm+n

√
m+ n

and σv = qn/m · δm+n

√
m+ n

be the standard deviation of coordinates of x and of v correspondingly. Consider
the distribution of

vtb = xts+ vte =

n∑
i=1

xi · si +
m∑
i=1

vi · ei.

vtb is a sum of m+n independent random variables and, therefore, its distribu-
tion can be approximated by a Gaussian distribution according to the Central
Limit Theorem. In order to learn the parameters of the Gaussian, we need to
obtain expectation and variance of x1 · s1 and v1 · e1.

First, consider the distribution of x1 · s1. As s1 has a Bernoulli distribution
with parameter S2, x1s1 is a random variable from the distribution that can
be obtained by sampling 0 with probability S2 and sampling from a Gaussian
distribution with mean 0 and variance σ2

x with probability 1 − S2. Therefore,
E(x1 · s1) = 0 and Var(xi · si) = S2σ2

x.
Then, consider v1e1. As v and e are independent and E(v1) = E(e1) = 0,

E(v1e1) = E(v1)E(e1) = 0 and Var(v1e1) = Var(v1) ·Var(e1) = α2σ2
v.

Then the distribution of vtb is close to the Gaussian distribution with ex-
pectation 0 and variance

σ2 = nVar(x1s1)+mVar(v1e1) = nS2σ2
x+mα

2σ2
v =

δ2(m+n)

m+ n

(nS2

q2
+mα2q2n/m

)
.

(16)
Our goal is to obtain a distribution that is as concentrated around zero as pos-
sible. Hence we choose parameters m and q in order to minimize variance of
vtb.

First, we find the optimal value of q by differentiation of Equation (16) :

∂σ2

∂q
=
δ2(m+n)

m+ n
·
(
− 2nS2

q3
+

2n

m
·mα2q

2n
m −1

)
= 0 → qopt =

(S
α

) m
m+n

.

After replacing q by qopt in Equation (16) we obtain:

σ2 =

(
Sδm+n

(α
S

) m
m+n

)2

. (17)

Also, for σx and σv we obtain the following relation

σx
σv

=
q−n/m

q
=
α

S
. (18)
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Then, we find the optimal value of m by differentiating ln(σ):

∂ ln(σ)

∂m
= ln(δ) + n ln

(α
S

)
· 1

(m+ n)2
= 0 → mopt =

√
n · ln(S/α)

ln(δ)
− n

(19)
Now we replace m by mopt in Equation (17):

σ(δ, n, S, α) = σ(m̂, δ, n, S, α) = α · exp
(
2
√
n ln(S/α) ln(δ)

)
.

The distance between the distribution of vtb and the Gaussian distribution
with mean 0 and variance σ2 can be estimated by the Berry-Esseen inequality
(see Theorem 1). To use this inequality we need to compute the third absolute
moments of x1s1 and v1e1.

We start with x1s1. As x1 and s1 are independent,

E{|x1s1|3} = E{|x1|3}E{|s1|3}.

By Lemma 2, E{|x1|3} = 2
√

2/πσ3
x. As s1 has the Bernoulli distribution with

parameter S2, E{|s1|3} = E{s1} = S2. Putting two parts together, we get

ρx1s1 = E{|x1s1|3} = 2
√

2/πS2σ3
x. (20)

In the same way we obtain

ρv1e1E{|v1e1|3} =
8

π
α3σ3

v. (21)

Denote the cumulative distribution function of vtb by Fvtb, and denote the
cumulative distribution function of the Gaussian distribution with mean 0 and
variance σ2 by Φσ. By the Berry-Esseen inequality, there exists a constant C0

such that
sup
x∈R
|Fvtb(x)− Φσ(x)| 6 C0 ·

nρx1s1 +mρv1e1
(nS2σ2

x +mα2σ2
v)

3/2.
(22)

Then, using Equations (18) and (20) to (22), for the distance between the dis-
tributions we get:

sup
x∈R
|Fvtb(x)−Φσ(x)| 6 C0

√
8

S2π
·
n+mS

√
8/π

(m+ n)3/2
6 C0

√
8

S2π
· 1√

m+ n
. (23)

B Heatmaps for sieving and delta-squared BKZ cost
models
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Fig. 6: Comparison of costs of the attacks under the sieving BKZ cost model.
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Fig. 7: Comparison of costs of the attacks under the delta-squared BKZ cost
model.
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Fig. 8: Bit-security as a function of LWE parameters n and α assuming sieving
and delta-squared BKZ cost models.
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