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Abstract. In recent years, there has been renewed interest in random lattices, both from
a mathematical and an algorithmic point of view. In this article, we review the main
properties of random lattices, compare them with experimental results, and formulate
heuristics. For instance, we apply our heuristics to Darmstadt’s Shortest Vector Problem
challenges, and compare recent theoretical results of Kim and Venkatesh on the number
of reduced bases with low-dimensional experiments.

1. Introduction

The set of full-rank lattices in Rn of unit co-volume is identified with the group Ln =
SL(n,R)/SL(n,Z). In 1945, Siegel [23] introduced a “natural” measure µn over Ln such
that µn(Ln) is finite to prove the existence of dense lattice packings: µn is the projection
of the Haar measure of SL(n,R) over Ln, normalized so that µn(Ln) = 1. Accordingly,
a random lattice is a unit-volume lattice in Rn chosen with distribution µn.

In the 50s, several results on random lattices appeared, such as [16, 17, 18, 10, 19], but
the topic had essentially disappeared from the mathematical literature until Södergren
published [25, 24] a few years ago, where he studied the configuration (lengths and angles)
of shortest vectors in a random lattice, revisiting Rogers [18].

On the other hand, there has been growing interest in random lattices from the al-
gorithmic community in the past fifteen years. After establishing the first worst-case to
average-case reductions over lattices [2], Ajtai used Siegel’s measure to formulate con-
jectures [3] on the hardness of lattice problems, and showed in an unpublished manu-
script [1] how to efficiently sample Siegel’s distribution. Goldstein and Mayer [7] inde-
pendently presented a simple efficiently samplable distribution, and showed that it con-
verges in a weak sense to Siegel’s distribution: this discrete distribution has been very
popular among lattice practitioners [13, 6, 4] to benchmark lattice algorithms, which is
useful to assess the concrete security of lattice-based cryptosystems. In fact, it is even
used in an online contest [20] calledThe SVP Challenge: this contest asks to find extremely
short vectors in explicit lattices of increasing dimension.

Random lattices have also been used to improve our understanding of the behaviour
of lattice algorithms: if h(n) denotes the radius of the unit-volume n-dimensional ball,
i.e. h(n) = 1/v

1/n
n where vn is the volume of the n-dimensional unit ball, Chen and

Nguyen [4] used the heuristic estimate h(n) for a random lattice to predict approximately
the behaviour of the BKZ reduction algorithm [21] for high blocksizes. This is somehow
reminiscent of the situation of the best integer factoring algorithms like the number field
sieve or the quadratic sieve, where the complexity analysis assumes heuristically that
certain random numbers produced by the algorithm have the same probability of being
smooth as a uniformly-distributed random number of the same bit-length.
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Though the interest in random lattices is growing, it appears that mathematical results
such as [18, 25, 24] are not widely known in the algorithmic community. And several
papers such as [3] give properties of random lattices without proofs, such as the existence
of a basis with norms asymptotically close to h(n).
Our results. We aim at clarifying what is known and not known for random lattices, and
perform experiments to check theoretical results and heuristics. In Sect. 2, we show that
the expectation of the first minimum of a random lattice is asymptotically equivalent to
the Gaussian heuristic estimate h(n). We introduce a heuristic (Lemma 2.6) to guess the
distribution of the first minimum. In Sect. 3, we show how some of the previous results
on random lattices can be adapted to random integer lattices, and check the experimental
validity of our first minimum heuristic. We apply our heuristics to the SVP challenge,
such as guessing when it is likely that a shortest vector has already been found. In Sect.
4, we focus on the low-dimensional case. We show that the expectation of various quan-
tities related to successive minima can be explicitly computed in dimension two. In low
dimension, we enumerate reduced bases to investigate the gap between experiments and
theoretical results [22, 8] on the number of reduced bases in random lattices: it turns out
that the experimental expectation is consistent with theory, but not so with the standard
deviation. Sect. 5 deals with random bases of a given lattice: we compare the main gener-
ation algorithms used in the literature, and highlight their issues. This allows us to study
the dark bases phenomenon introduced by Kim [22]: these are LLL-reduced bases which
are output by LLL with negligible probability in practice. We uncover an extreme case:
lattices of dimension ≤ 10 which only have two LLL bases, but only one can be output
when taking random bases as input.

2. Random Real Lattices

2.1. Siegel’s measure. The moduli space of full-rank lattices in Rn of unit covolume is
homeomorphic to the topological quotient Ln = SL(n,R)/SL(n,Z). In 1945, Siegel [23]
proved that this quotient is of finite mass under the the projection of the Haar measure of
SL(n,R) overLn, yielding a natural probability distribution µn overLn. By construction
this distribution is translation-invariant, that is for any measurable set A ⊆ Ln and all
f ∈ SL(n,Z), µn(A) = µn(Af). A random (real) lattice is a unit-covolume lattice in
Rn drawn under the probability distribution µn. Macbeath and Rogers [10] proved the
following averaging result on µn, generalizing the result appearing in [23] for Riemann-
integrable function:

Theorem 1. Let f be a compactly supported Lebesgue-integrable function over Rn. Then:∫
Rn f(x)dx =

∫
L∈Ln

f(L \ {0})dµn, where f(L \ {0}) =
∑

x∈L,x̸=0 f(x).

In particular, if we take f to be the characteristic function of a bounded measurable set
C , then

∫
Rn f(x)dx is the volume of C , and f(L \ {0}) is the number of non-zero points

in L ∩ C . Hence, Theorem 1 states that the average number of non-zero lattice points in
C is equal to vol(C).

2.2. Higher Moments. Theorem 1 is actually an estimate of the first moment of f(L \
{0}), when f is the characteristic function of a bounded measurable set C . If C is further
assumed to be symmetrical in 0, Rogers [18] bounded arbitrary-ordermoments as follows:
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Theorem 2. Let f be the characteristic function of a measurable set C whose volume is V ,
and symmetric with respect to 0. Then, provided that n ≥ [ 14k

2] + 3:

0 ≤
∫
L∈Ln

f(L \ {0})kdµn − 2ke−V /2
∞∑
r=0

rk

r!
(V /2)r

≤
(
2(3)[k

2/4](
√
3/4)n + 21(5)[k

2/4](
1

2
)n
)
(V + 1)k.

Rogers deduces the following corollary:

Corollary 3. Let C be a measurable set of fixed volume V , symmetric with respect to 0.
Then the numberNn of pairs of points ±x of a lattice L ∈ Ln in C has a limit distribution,
as n grows to infinity, which is the Poisson distribution with mean V /2.

To see this, recall that the Poisson distribution of mean V /2 is a discrete distribution
whose probability mass function is λre−λ/r! where λ = V /2, and whose k-th moment
is therefore:

∞∑
r=0

rkλre−λ 1

r!
= e−λ

∞∑
r=0

rkλr 1

r!
.

Let Nn be the number of pairs of points ±x of a random lattice L ∈ Ln in C . Then
f(L \ {0}) = 2Nn so f(L \ {0})k = 2kNk

n . Hence:

0 ≤ E(Nk
n)−e−V /2

∞∑
r=0

rk

r!
(V /2)r ≤ {2(3)[k

2/4](
√
3/4)n+21(5)[k

2/4](
1

2
)n}((V+1)/2)k.

Now, let k and V be fixed. Then, as n grows to infinity, the right-hand term converges to
zero. Therefore, E(Nk

n) converges, and its limit is:

e−V /2
∞∑
r=0

rk

r!
(V /2)r = e−λ

∞∑
r=0

rk

r!
λr,

which is exactly the k-th moment of the Poisson distribution of mean λ. Since the Poisson
distribution is uniquely determined by its moments, the method of moments implies that
(Nn) converges in distribution to a Poisson-distributed random variableX of mean λ =
V /2, which proves Cor. 3.

Let Nn be the number of pairs of points ±x of a random lattice L ∈ Ln, lying in C ,
then Nn converges in distribution towards a Poisson distribution of CDF Γ(⌊k+1⌋,λ)

⌊k⌋! , or
e−λ

∑⌊k⌋
i=0

λi

i! or Q(⌊k + 1⌋, λ). As a direct application, we have:

Corollary 4. Let α > 0. Then for a random unit-volume lattice L, Pr(λ1(L) ≤ α1/nh(n))
converges to 1− e−α/2 as n grows to infinity.

Proof. LetC be the centered ball of volumeα: its radius isα1/nh(n). Then, λ1(L)α
1/nh(n)

if and only if there is no non-zero lattice point in C . And the CDF of the Poisson distri-
bution at 0 is e−α/2. ⊓⊔

Using α = 1, we obtain that Pr(λ1(L) ≤ h(n)) converges to 1 − e−1/2 ≈ 39%. And
using α = 2 ln 2, Pr(λ1(L) ≤ (2 ln 2)1/nh(n)) converges to 1/2.
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2.3. Distribution of the first minimum. Sodergren noticed in [25] that Cor. 3 shows
the following:

Theorem 5. if L is a random unit-volume full-rank lattice in Rn, then the volume of the
ball of radius λ1(L) has a limit distribution, which is the exponential distribution with mean
2, that is with parameter λ′ = 1/2.

Proof. Let Vn be the volume of the ball of radius λ1(L). Let x > 0 and let C be the ball of
volume x. Then Vn ≤ x if and only if the ball C contains a non-zero lattice point, that is
Nn ≥ 1 whereNn is defined as in Cor. 3. By Cor. 3, Pr(Nn = 0) converges to e−x/2 as n
grows to infinity, so Pr(Vn ≤ x) converges to 1−e−x/2 as n grows to infinity. Hence, the
CDF of Vn converges towards to the CDF of the exponential distribution with parameter
λ′ = 1/2, at every point of continuity. ⊓⊔

This suggests that λ1(L) might have a distribution close to the following:

Lemma 6. LetXn be a random variable such that the volume of the n-dimensional ball of
radiusXn has exponential distribution with mean 2. ThenXn follows a Weibull distribution
of shape parameter n and scale parameter 21/nh(n). Then:

E(Xn) = 21/nΓ(1 + 1/n)h(n) = (1 + (ln 2− γ)/n+O(1/n2))h(n),

where γ is Euler’s constant, and therefore ln 2 − γ ≈ 0, 1159 . . . . And the k-th moment of
Xn is:

E(Xk
n) = (21/nh(n))kΓ(1 + k/n).

In particular:

Var(Xn) = (21/nh(n))2[Γ(1 + 2/n)− (Γ(1 + 1/n))2].

Proof. This follows from the definition of the Weibull distribution, whose moments are
known. For the asymptotic development, note that 21/n = 1 + (ln 2)/n+ O(1/n2) and
Γ(1 + 1/n) = 1− γ/n+O(1/n2) where γ is Euler’s constant. Therefore:

E(Xn) = (1 + (ln 2− γ)/n+O(1/n2))h(n).

⊓⊔

Th. 2 is also useful for varying V . First, let us clarify the expression in Th. 2:

Lemma 7. For any V ≥ 0:

e−V /2
∞∑
r=0

rk

r!
(V /2)r =

{
V /2 if k = 1

V /2 + (V /2)2 if k = 2
.

Corollary 8. There exist constants c1 > 0 and c2 > 0 such that for all sufficiently large n,
the number Nn of pairs of points ±x of a random lattice L ∈ Ln in a measurable set Cn of
volume Vn, symmetric with respect to 0, satisfies:

E(Nn) = V /2(1 +O(2−c1n))(1)
Var(Nn) = V /2 + (V + 1)2O(2−c2n)(2)

Proof. This follows by combining Lemma 7 and Th. 2. ⊓⊔

By combining Markov’s inequality with Cor. 8, we obtain:
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Theorem 9. Let L be a random unit-volume full-rank lattice in Rn. Then, with probability
at least 1− o(1) as n grows to infinity:

1− (log logn)/n ≤ λ1(L)

h(n)
≤ 1 + (log logn)/n.

Thus, E(λ1(L)/h(n)) converges to 1, and therefore E(λ1(L)) is asymptotically equivalent
to h(n).

Proof. Markov’s inequality ensures that for any t > 0:
Pr(|Nn − E(Nn)| > t) ≤ Var(Nn)/t

2.

LetC be the centered ball of volume V = (logn)/2, and let t = (logn)/8. ThenE(Nn)−
t = (logn)/4(1+O(2−c1n))− (logn)/8 = (logn)/8(1+O(2−c1n) > 1, for sufficiently
large n. And:
Var(Nn)/t

2 = 16((logn)/4+((logn)/2+1)2O(2−c2n))/log2n = O(1/ logn)+O(2−c2n).

Therefore, with probability at least 1− o(1), λ1(L) is less or equal than the radius of the
ball C , which is (logn)/21/nh(n) ≤ 1 + (log logn)/n for all sufficiently large n.

To obtain the lower bound, let C be the centered ball of volume V = 2/ logn and
t = 1/ log logn. Its radius is (2/ logn)1/nh(n) ≥ 1 − (log logn)/n for all sufficiently
large n. Furthermore, E(Nn) + t = 2/(logn)(1 + O(2−c1n)) + 1/ log logn = o(1)
and Var(Nn)/t

2 = o(1), which proves the lower bound. The bounds on λ1(L)/h(n)
hold with probability at least 1 − o(1). And by Minkowski’s bound, we always have
0 < λ1(L)/h(n) ≤ 2. It follows that E(λ1(L)/h(n)) converges to 1. ⊓⊔

Th. 9 shows that the expectation of λ1(L) is asymptotically equivalent to that of Xn

from Lemma 6.

3. Random Integer Lattices

3.1. Definitions. In the literature, several classes of random integer lattices have been
considered: from a practical point of view, it is preferable to consider classes which are
efficiently samplable. In order to facilitate comparisons with real random lattices, it is
customary to scale any integer lattice L to make its co-volume equal to one, by normal-
izing it by a factor vol(L)−1/ dim(L).

Goldstein and Mayer [7] considered the (finite) set IN,n of full-rank n-dimensional
integer lattices of co-volume exactly N ≥ 1, normalized by N1/n, so that each element
of IN,n is a lattice of unit co-volume. In [7], it is noted that if N is a sufficiently large
prime number, one can efficiently sample the uniform distribution over IN,n, using the
Hermite normal form: there is an efficient probabilistic algorithm which, given n and a
primeN , outputs a random lattice whose distribution is statistically close to the uniform
distribution over IN,n. Motivated by worst-case to average-case reductions, Gama et
al. [5] considered partition cells of IN,n based on the factor group Zn/L. More precisely,
for any finite Abelian group G, let IG,n be the (finite) set of full-rank n-dimensional
integer lattices L such that Zn/L ≃ G, where each lattice L is divided by #G1/n, #G
being the cardinality ofG. Then the sets IG,n form a partition of IN,n whenG runs over
all finite Abelian groups of order N , up to isomorphism.

The structure theorem states that any finite Abelian group G is isomorphic to a direct
product Z/q1Z × · · · × Z/qkZ; the rank of G is then defined as the minimal number
of cyclic groups in such a decomposition. In order for IG,n to be non-empty, the rank
of G must be ≤ n. If the qi’s are known for one such decomposition, [5] shows how
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to efficiently sample the uniform distribution over IG,n. This generalizes the sampling
result of [7], because if G has prime order, then IG,n = I#G,n.

We note that Nguyen and Shparlinski [12] recently determined the asymptotic pro-
portion of co-cyclic lattices (those for which Zn/L is cyclic) among all full-rank integer
lattices: the natural density is 1/[ζ(6)

∏n
k=4 ζ(k)] ≈ 85% (for large n). Finally, we men-

tion that in an unpublished manuscript [1], Ajtai showed how to efficiently sample a
random lattice whose distribution is statistically close to the Haar distribution over unit
co-volume lattices.

3.2. Properties. Goldstein and Mayer [7] proved the following equidistribution result:

Theorem 10. Let A be a measurable subset of Xn such that the boundary of A has µ-
measure zero, and letχ denote the characteristic function ofA. Then the average (1/#IN,n)

∑
L∈IN,n

χ(L)

converges when N grows to ∞, and its limit is µ(A).

As an example, let A be the subset of Xn formed by all lattices L such that λ1(L) ≤
h(n). Cor. 4 implies that µ(A) converges to 1−e−1/2 when n grows to infinity. For any n,
the average (1/#IN,n)

∑
L∈IN,n

χ(L) converges towardsµ(A)whenN grows to infinity.
This average is the probability that a random lattice L ∈ IN,n satisfies λ1(L) ≤ h(n).

Theorem 11. Let ε > 0. There exists n0 > 0 such that for all n ≥ n0, there existsN0 such
that for all N ≥ N0, a random lattice L chosen uniformly at random from In,N satisfies
with probability at least 1− ε:

1− (log logn)/n ≤ λ1(L)

h(n)
≤ 1 + (log logn)/n.

Proof. Let A be the subset of Xn formed by all lattices L such that:

1− (log logn)/n ≤ λ1(L)

h(n)
≤ 1 + (log logn)/n.

By Th. 9, there exists n0 > 0 such that for all n ≥ n0, µ(A) ≥ 1− ε/2. Now, let n ≥ n0.
ByTh. 10, there existsN0 such that for allN ≥ N0, |(1/#IN,n)

∑
L∈IN,n

χ(L)−µ(A)| ≤
ε/2, therefore (1/#IN,n)

∑
L∈IN,n

χ(L) ≥ 1− ε. ⊓⊔

3.3. Experiments.

3.3.1. Equidistribution speed. Th. 10 is an equidistribution result on IN,n, but it is only
asymptotic: in particular, it does not say how large the co-volume N must be, compared
to n. A closer look at [7, Th. 5.2] reveals that the proof requires that n2/ logN = o(1),
which leads to very large lattices.

On the other hand, we note that ifN is too small, then IN,n cannot be equidistributed,
because the distribution of λ1(L) is too far from that of a random lattice. Indeed, note
that for any n-dimensional integer lattice L of volume N and any n′ ∈ {1, . . . , n}, there
is a n′-dimensional sublattice L′ ⊆ L of volume ≤ N : such a sublattice can easily be
derived from the Hermite normal form of L. It follows that for any L ∈ IN,n and any
n′ ∈ {1, . . . , n}, we have that λ1(L) ≤ N1/n2h(n′)N1/n′

= 2h(n′)N1/n′+1/n (because
Minkowski’s upper bound on λ1 is exactly twice the Gaussian heuristic). If N is suffi-
ciently small and if n′ is suitably chosen, then the upper bound 2h(n′)N1/n′+1/n will
be much smaller than h(n). For instance, if N ≤ 2n/ logn, then n′ = ⌊n/ logn ⌉ implies
that 2h(n′)N1/n′+1/n ≤ O(h(n′)) = O(

√
n/ logn)while h(n) = Θ(

√
n), which would

contradict Cor. 4.
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Figure 1. Average and ranges of 50% median of λ1(L)/h(n). Statistics over
M = 10, 000 bases from EIb(n),n. Left: b(n) = n. Right: b(n) = n logn

Weperformed experiments to guess how largeN must be in practice to ensure equidis-
tribution. To do this, we compare the experimental distributions of λ1(L) between very
large N with smaller N . Let b(n) be a function of the dimension n and EIb(n),n be the
union of IN,n for all N ∈ [2⌊b(n)⌉−1, 2⌊b(n)⌉ − 1]. For b(n) = n, n logn and some other
functions, we compute several statistics over the shortest vectors of M = 10, 000 ran-
dom bases for each dimension. Figure 1 shows the averages, ranges of 50% median of
λ1(L)/h(n), and 1 ± (log logn)/n. In the left and right figures, L is uniformly sam-
pled from EIn,n and EIn logn,n respectively. For instance, for ε = 1/2, n0 = 20 and
N0 = 2n logn seem likely to satisfy the assumption of Th. 11.

Notice that b(n) = n implies h(n) ∈ [21−1/n, 2]·Vn(1)
−1/n ≈

√
2n/πe = 0.4839·

√
n

whereas the length of the shortest vector is discretized as the square root of integers.
Figure 2 shows the histogram of λ1/h(n) of EIb(n),n for b(n) = n, 2n, 3n and n logn
in n = 40 dimension. To see the difference, we also look at the Kolmogorov-Smirnov
statistics between the Weibull distribution and the sampled values of λ1(L)/h(n) in the
right in Figure 2

To summarize, experiments suggest that IN,n with log2 N ≥ 5n is sufficient in prac-
tice to make the distribution close to the Siegel distribution. Furthermore, in this range,
we get that the distribution of λ1(L) is very close to the Weibull distribution of Lem 6.

3.3.2. Equidistribution of other random integer lattices. Th. 10 is an equidistribution re-
sult on IN,n. One might wonder if this result can be generalized to IGn,n for suitable
sequences (Gn) of finite Abelian groups of order growing to infinity. For instance, one
may consider a sequence (Gn) of cyclic groups. To this end, we performed experiments
for sequences (Gn) of cyclic groups: the lattices appear to have a distribution close to the
Haar distribution.

Furthermore, we experiment using lattices from higher rank cyclic groups. Fix rank r
and dimensionnThen select random integer q of ⌊n logn/r⌉-bit, and select randomgroup
elements g1, . . . , gn in (Z/qZ). The lattice is defined by all integer tuple (x1, . . . , xn) s.t.
satisfies

∑
xigi ≡ 0 ( mod q). Figure 3 shows the averages, ranges of 50% median of

λ1(L)/h(n), and 1± (log logn)/n for r = 5 and 20.

3.4. Application to the SVPChallenge. TheSVPChallenge [20]managed by TUDarm-
stadt is an online contest to find a nearly shortest vector in random integer lattices. More
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Figure 2. Left: Histogram of λ1(L)/h(n) for b(n) = n, 2n, 3n and n logn
in 40 dimension. Right: Kolmogorov-Smirnov statistics between the Weibull
distribution and experimental λ1(L)/h(n). Statistics overM = 10, 000 bases.

precisely, the challenge problem in dimension n is randomly chosen from IN,n whereN
is a random 10n-bit prime number determined by a seed parameter s. For each dimen-
sion, the goal of the challenge is to find a vector shorter than 1.05h(n): if such a vector
has already been found, the goal is to find a shorter vector than the current record in the
same dimension, and one is allowed to change of seed, where the default seed is zero.

3.4.1. Distribution of the first minimum. We discuss heuristic estimates for the first min-
imum of challenge lattices, based on random lattices theory. This allows to “guess” how
likely one can find a better solution to a solved challenge.

The experiments of Sect. 3.3 suggest that the distribution of the SVP challenge lattices
is close to the distribution of random lattices, and that λ1/h(n) has a distribution close to
the Weibull distribution with parameter (η = 21/n,m = n). If true, the probability that
a shorter vector than |v| is given by the CDF (cumulative distribution function)

(3) 1− e−(|v|/h(n))n/2.
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Figure 3. Average and ranges of 50% median of λ1(L)/h(n). Statistics over
M = 10, 000 bases from IGn,n whose co-volume is ≈ 2n logn. Left: r = 5.
Right: r = 20.

Recall that the main theorem of Södergren [25, Theorem 1’] states that the sequence
of volumes {Vn(λi/h(n))}∞i=1 converges weakly to the Poisson point process with inten-
sity 1/2. Our previous experiments suggest that λ1 of the SVP challenge lattices have a
distribution close to Weibull.

Assume the challenge instances follow this distributionThen, the i-th volumeVn(λi/h(n)

follows the Gamma(i, 2) whose p.d.f. (probability density function) is 2−ixi−1e−x/2

(i−1)! . In
particular, the first volume follows the exponential distributionwhose p.d.f. is (1/2)e−x/2.
Under this assumption, assume that a short lattice vector v has been found in a dimension
n. Then, the probability that a shorter vector exists in the same lattice can be computed
as follows.

1− Pr
L

[
v is the shortest in L|L has a vector of length |v|

]
1− v is the shortest in L

PrL[L has a vector of length |v|]
1− v is the shortest in L∑∞

k=1 PrL[Length of k-th vector is |v|]

1− (1/2)e−W/2∑∞
k=1 2

−kW k−1e−W/2/(k + 1)!
whereW = Vn(|v|)

1− e−W/2 = 1− e−Vn(|v|/2).

Table 1 shows the probability from the current records of SVP Challenge.
When this probability is small, say being lower than 10%, meaning that the found vec-

tor is probably the shortest, trying another seed is a possible strategy. We now discuss the
expected necessary number of lattice bases in this case. Because the lattice co-volume is a
random 10n-bit prime, i.e. in [w(n), 2w(n)−1]wherew(n) = 210n−1, the distribution of
λ1 is not exactly a shifted Weibull distribution even if we neglect the difference between
the challenge instances and truly random lattices. Such variation can be ignored by choos-
ing special seeds that give small volumes, for instance smaller than 1.001w(n). Again as-
suming the distribution of λ1(L)/h(n) is Weibull, with h(n) = w(n)1/nVn(1)

−1/n, we
can estimate the necessary number K of new lattice bases to find a vector shorter than
|v|. Let x1, . . . , xK be the points sampled from the Weibull distribution induced from the
random integer lattices whose co-volume is w(n). Then, the CDF of min{x1, . . . , xK} is
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Table 1. Probability that there exists a vector shorter than current records and
expected number of bases to find a shorter vector.

dim |v|/h(n) of best known vector probability (⁇) number of bases (⁇)

79 0.91591 0.00048444 1431

90 0.95952 0.0012056 58

108 0.95162 0.0023579 294

110 0.98355 0.077479 9

120 0.99535 0.24859 3

126 1.00556 0.63413 1

130 0.99871 0.34476 2

140 1.01139 0.91293 1

146 1.04534 ≈ 1 1

150 1.04192 ≈ 1 1

given by
CK−min = 1− (1− C(x))K = 1− e−K·(x/h(n))n/2.

Thus, the probability that there exists a shortest vector shorter than |v| is 1−e−K·(|v|/h(n))n/2.
Hence, letting K = −2 log(1− p)/(|v|/h(n))n, the probability is p.

Setting the probability 1/2, we get the number:

(4) K = ⌈2 log 2/(|v|/h(n))n⌉ = ⌈log 2/Vn(|v|/210)⌉.

Table 1 shows the expected numbers for the current records in the SVP Challenge.

Remark 12. The strategy without selecting the seeds can be considered. That is, sequen-
tially take the integer seeds. λ1(L) follows the product distribution of the Weibull and the
determinant uniformly distributes over the prime numbers in [210n−1, 210n− 1]. Due to the
prime number theorem, the p.d.f. of volume has a distribution close to c/ log(x) for some
constant c. Thus, the product distribution is given by the integral

P (z) = n · 2−m−1 ·
∫ z·21−m

z·2−m

wn−2e−wn/2 · c

log(z/w)
dw.

We obtain the CDF by integrating this function from −∞ to z, and the distribution of the
minimum of λ1 ofK bases.

3.4.2. Number of solutions. Remember that the goal of the challenge is to find a vector
shorter than 1.05h(n) for a lattice chosen uniformly at random from IN,n, where N
is a random 10n-bit prime number. We compute a heuristic estimate of the number of
solutions from random lattices theory.

Let Nn be the number of pairs of points ±x of a random lattice L ∈ Ln in C . Let Nn

be the number of of pairs of vectors of norm ≤ 1.05h(n) for a random lattice L ∈ Ln.
By Th. 1, we know that: E(Nn) = 1.05n/2. Letting C be the ball of radius 1.05h(n), and
because

√
4/3

n/2
≈ 1.0746n, Theorem. 2 implies that:

lim
n→∞

(Var(Nn)− 1.05n/2) = 0.
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4. Explicit computations and experiments in low dimensions

-1.5 -1.0 -0.5 0 0.5 1 1.5

Fundamental domain of SL(2,Z) \ h

4.1. On the average value of the first
minima in dimension 2. In dimension
two, it is possible to carry out explic-
itly the computations. Taken modulo
rotations, the moduli space Λ2 of two-
dimensional unit-volume lattices corre-
sponds to the SL(2,Z)-equivalent classes
of the upper dimension 2 upper half-plane
h = SL(2,R)/SO(2,R) ∼= {x + iy ∈
C : y > 0} under the modular action of
SL(2,Z) given by τ 7→ (aτ + b)/(cτ + d).
By the Iwasawa decomposition, an ele-
ment of h has a unique representative of

the form y−1/2

(
1 x
0 y

)
. Lagrange’s reduction shows that the connected set D =

{(x, y) : x2 + y2 ≥ 1, |x| ≤ 1/2, y > 0} is a fundamental domain for this action.
By adding the condition x ≥ 0, one obtains a fundamental domain for GL(2,Z). For
instance, if x+ iy is a point of this fundamental domain, the corresponding unimodular
lattice has first minimum y−1/2.

The Siegel measure over Λ2 derives from the hyperbolic measure dxdy/y2 invariant
by the modular action of SL(2,Z). Let us explicit its mass: the corresponding fundamen-
tal domain D, although not compact, has finite measure since

∫∞
y0

dy/y2 converges. To
normalize the measure so that µ(Λ2) = 1, it suffices to take :

dµ(x+ iy) =
3

π

dxdy

y2
.

On can thus compute expectations over two-dimensional random lattices, by integrat-
ing dµ(x + iy) over {(x, y) : x2 + y2 ≥ 1, |x| ≤ 1/2, y > 0}. As an example, we
have:

Theorem 13. Let L be a random two-dimensional unit-volume lattice. Then:

E(λ1(L)) =
2
π

∫ 1/2

−1/2
dx

(1−x2)3/4
≈ 0.6826 E(λ2(L)) ≈ 1.97314

E(λ2
1(L)) = 3 ln 3(2π)−1 ≈ 0.5245 E(λ2(L)

2) = ∞

Proof. We have:

E(λ1(L)) =
3

π

∫ 1/2

−1/2

(∫ ∞

√
1−x2

dy

y2+1/2

)
dx =

2

π

∫ 1/2

−1/2

dx

(1− x2)3/4
≈ 0.6826.

⊓⊔

In particular, one notes that the expectation E(λ1(L)) is much less than the maximal
value of λ1(L), which is √γ2 = (4/3)1/4 ≈ 1.0746.

4.2. On the number of Siegel and LLL bases in low dimension.

4.2.1. Reduced basis of a lattice. Let L be a lattice; as soon as rkL ≥ 2, it owns infinitely
many bases. Among those, some have interesting and congenial properties, such as hav-
ing reasonably small vectors and low orthogonality defect. They are called reduced bases
and finding them is the goal of lattice reduction theory. A first notion, introduced in 1945
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by Siegel in [23] to approximate a fundamental domain of the classes of generalized up-
per half-plane hn = SL(n,R)/SO(n,R) under the action of the discrete group SL(n,Z).
Transposed in the lattice theory language gives the following definition:

Definition 14 (Siegel-reduced basis). A basis B = (b1, . . . , bn) of a lattice L is said to be
(δ, η)-Siegel-reduced for certain parameters 0 < δ < 1 and 1/2 < η < 1 if the following
conditions are satisfied:

(5) ∀i < j, |⟨bj , πi(bi)⟩| ≤ η∥πi(bi)∥2 (Size-Reduction condition)

(6) ∀i, δ∥πi(bi)∥2 ≤ ∥πi+1(bi+1)∥2 (Siegel condition),

where πi is the orthogonal projection on the subspace (b1, . . . , bi−1)
⊥, with the convention

of π1 being the identity map.

Even thought of very valuable theoretical interest, the Siegel reduction is quite imprac-
tical since it lacks a computational method to reduce an arbitrary basis in a Siegel-reduced
one. In 1982, Lenstra, Lenstra, and Lovász designed the lll algorithm [9], being the first
algorithm whose running time is polynomial in the rank of the lattice.

Definition 15 (lll-reduced basis). A basis B = (b1, . . . , bn) of a lattice is said to be (δ, η)-
LLL-reduced for certain parameters 1/4 < δ < 1 and 1/2 < η <

√
δ if it is size-reduced

(in the sense of definition 14 and if the following condition is satisfied:

(7) ∀i, δ∥πi(bi)∥2 ≤
(
∥πi+1(bi+1)∥2 +

⟨bi+1, πi(bi)⟩
∥πi(bi)∥2

)
(Lovász condition).

4.2.2. Number of reduced basis. The number of Siegel-reduced bases (and therefore lll) is
finite for a given lattice. Since the Siegel measure gives a natural measure on the moduli
space of lattices, one can look at the expected number of reduced bases of a random lattice.
This question has been treated in the PhD. thesis ([22]) of Kim and the work of Kim and
Venkatesh ([8]):

Theorem 16. Let n be a non-negative integer.
(1) The average number1 of the (δ, η)-lll bases in dimension n is:

n2n(2η)(n−1)(n−2)/2

mnn!(n− 1)!

n∏
ℓ=2

∫ η

−η

(δ − η2)−
ℓ(n−ℓ)

2 .

(2) The average number of the (δ, η)- Siegel bases in dimension n is:

n2n(2η)(n−1)(n−2)/2

mnn!(n− 1)!
δ−

n3−n
12 ,

where mn = n
√
π
−(ℓ+2)(ℓ−1) ∏n

ℓ=2 ζ(ℓ)Γ(ℓ/2) is the mass of a fundamental do-
main of SL(n,Z) \ SL(n,Z)/SO(n,Z) for the Haar measure.

As introduced in Section 3, one can efficiently sample random integer lattices from
using the Goldstein and Mayer distribution. Table 2 enumerates the expected (theoretical
and empirical) number of (0.998001, 0.5)-lll/Siegel bases, under the action of the group
(Z/2)d, corresponding to the identification of vectors modulo their signs, as well as the
empirical standard variation of these distributions. The experiments consists in sampling

1 In Kim’s manuscript, the definition of the δ parameter differs from the usual one: Kim’s δ corresponds to an√
δ in the standard definition. We adapt the theorem in consequence.
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Table 2. Expected number of lll reduced bases for low dimensional lattices.

dim
(empirical) mean (empirical) std variation (theoretical) mean

LLL Siegel LLL Siegel LLL Siegel

2 1.001 1.091 0.0316 0.2878 1.001 1.104

3 1.007 1.488 0.0834 0.8606 1.008 1.479

4 1.036 2.623 0.1864 2.7273 1.036 2.666

5 1.113 7.337 0.4587 11.2318 1.116 7.133

6 1.303 33.384 0.7495 74.273 1.318 31.374

7 1.889 303.449 1.828 746.6434 1.949 251.5

8 3.376 5.8490 3.281

9 7.467 16.7904 8.642

10 40.03 106.4059 38.856

1000 lattices, using at least2 210d as size of coefficients, and then enumerating the reduced
basis with a recursive enumeration routine. The number of Siegel basis past dimension 8
was too large to get meaningful statistical results due to a very large standard deviation.
The expectation is consistent between theoretical estimates and practical results, showing
that the random integer lattice model is a very good approximation of random lattices
even in a non-asymptotic regime. However, the standard deviation is noticeably high,
though [8] showed that the standard deviation is asymptotically small: this phenomenon
may only be observed in higher dimensions than can be handled in a reasonable time.

5. Random basis of lattices

Though random lattices are well understood, there is a priori no good definition of
random bases of a given latticeL. Any definition of random bases ofL should only depend
on L itself.

5.1. Generative process for random basis and generating family. Let us fix a lattice
L, with a distinguished basis B = (b1, . . . , bn) ∈ Ln, represented as a matrix B ∈
GL(n,Z). As a preliminary remark and since it useful in different generating procedure,
we start with a brief preliminary discussion on vectors generation in L.

5.1.1. Sampling a vector in L. Let us suppose that we want to sample a vector in L ac-
cording to a distribution that is isotropic in the sense that its conditioning by the event of
getting a prescribed norm ℓ yields the uniform distribution overL∩B(0, ℓ). In order to be

2 Remark that Kim conducted experiments in low dimensions as well in his dissertation. Nonetheless he used an
insufficient number of bits to follow the Goldstein-Mayer distribution. Hence one can not consider the lattices
he sampled as ”random” in this sense.
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of practical interest, we also require the distribution to be effective, that is easily algorith-
mically samplable. In practice, it appears that a particular distribution fulfill this require-
ment and are sufficiently simple to sample in addition of being very congenial3: the (cen-
tered) discrete Gaussian distribution. This is the distributionΘL,σ(x) = Θ(L, σ)−1e−

∥x∥2

2σ2 ,
where x ∈ L and Θ(L, σ)−1 is a normalizing factor. Intuitively4, Θ(L, σ) is the condi-
tional probability that derived from the Gaussian kernel ρs(x) = e−

∥x∥2

2σ2 conditioned
by the event of belonging to L. Alternatively one can think of this distribution as the
normalized finite measure induced by the theta function on 1

σL, viewed as an Hermitian
vector bundle.

5.1.2. Generating by multiplication with random unimodular matrices. Since any pair of
basis of the lattice L are related by a unimodular transformation, a naive yet convenient
way to generate a random basis of L by first sampling a unimodular matrix U ∈ SL(n,Z)
and output the matrix P = UB. This is the solution chosen in most public-key lattice-
based cryptosystems, where the public key P matrix is constructed from the secret key
B. The generation then falls back to the sampling of a unimodular matrix.

• A first way to sample a unimodular matrix comes from the decomposition of
any element of SL(n,Z) in a product of transposition and (integral) transvection
matrix. It suffices indeed to randomly generate a random sequence of transposi-
tion/transvection matrices and multiply them all together. A variant of this strat-
egy is implanted for instance in the NIST post-quantum candidate drs ([14]).

• A second way consists in sampling a matrix S ∈ Zn×n, where each vector is
drawn independently from a probability distribution over Zn. With overwhelm-
ing probability this matrix is invertible, meaning that its row vectors Z-span a
sublattice of Zn. It then suffices to apply the construction of Micciancio and Gold-
wasser (Chap. 6 of [11]) to transform this family of vectors in a basis of Zn, at the
cost of expanding their norm by a factor dominated by

√
n.

It appears in practice that as far as our experiments were involved the two distributions
yield the same practical results. We thus refer this kind of generation by unimodular
generation.

5.1.3. On the covariance of the first vector sampled. Let P = U · B where U is a random
unimodular matrix. Then, by unrolling the definition, the covariance matrix of the first
vector P [1] of the generated basis P is:

cov P [1] = BT · cov U [1] ·B,

where U [1] is the first row vector of U . By a symmetry argument, the covariance matrix
of the discrete Gaussian distribution is diagonal. When generatingU —with an algorithm
independent ofB—, it then appears clearly that the covariance of the corresponding P [1]
is not basis-independent in L. In subsequent paragraphs, the bias induced by this gener-
ation is studied in an more extensive fashion.

3Another distribution with such properties would be the uniform distribution inL∩B(0, ℓ) for large enough ℓ.
For well chosen parameters i the two introduced distributions can be made statistically close by using rejection
sampling techniques.
4This intuition can actually be made rigorous by standard argument of discrete probability theory.
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5.2. Sampling a generating family. In the previous generating procedure, the role of
the initial basis B is preponderant as it twists the distribution of the vectors appearing
in the basis. An orthogonal method consists in trying to suppress the dependence on
this privileged basis by sampling according to an isotropic distribution, as introduced in
Paragraph 5.1.1. When sampling sufficiently many vectors independently—namely n+k
for a small constant k— they generates the whole original lattice with high probability.
This procedure doesn’t give a random basis but makes arise a natural notion of random
generating family. This procedure is coordinate-free in the sense that the Gaussian dis-
tribution is indeed coordinate-free: it only depends on the vectors of L. We refer to this
kind of process by the generic term Gaussian generation.

5.3. Experimental results on random basis with the LLL algorithm and LLL dark
bases. The lll algorithm is widely used in many branches of mathematics and computer
science, but despite its interest, its average-case analysis is still not fully understand. We
use here the lll reduction to highlight the differences between the two kind of procedures
described in Section 5.1, as well as to point out a surprising result on the discrepancy that
occurs between the different lll basis. Indeed, one can study the distribution of output
bases of the lll algorithm5.

5.3.1. Evolution of the bias in small dimension for random lattices. An intuitive experi-
ment consists in studying the total variation distance between the outputs of the two
distributions, once the lll reduction is applied. Formally we generated 5000 random
lattices (in the sense of Goldstein-Mayer), and for each of them generated 50000 bases,
apply the lll reduction and compute an empirical estimate of the TVD between these
distributions. The results of this extensive experiment are compiled in Figure 4 as the
serie Unimodular/Gaussian. This graph presents also the empirical TVD between two
independant series of samples drawn with same generation (Unimodular/Unimodular
and Gaussian/Gaussian series), in order to be able to differentiate a possible artifact of
measure from a real difference. Eventually, it appears clearly that the TVD between the
Gaussian and Unimodular generation is significantly larger and grows faster than the
TVD obtained between the two same series of sample, ruling out the measurement ar-
tifact possibility. Unsurprisingly, the bias between these two processes is an increasing
function of the dimension.

5.3.2. Dark bases for LLL reduction. Let us define the family of lattices (Ln)n as the lattices
generated by the rows of the d× n matrices ℓn:

1 0 0 · · · 0

(1− η) a 0 · · ·

0 (1− η)a a2
...

... 0
. . .

0 · · · 0 (1− η)an−2 an−1


,

with a = 0.8912. These lattices have an anomalously low number of bases: we experi-
mentally checked that up to dimension 10, Ln has exactly 2 lll-reduced bases, counted
modulo the sign of vectors, namely: on the one hand ℓn and the other hand the “reversed”
basis

κn = (ℓ[n], ℓ[n− 1], ℓ[n− 1] + ℓ[n− 2], . . . , ℓ[n− 1] + ℓ[n− 2] + · · ·+ ℓ[1]) .

5Technically speaking, reducing a generating family is possible with a variant of the lll algorithm, introduced
by Schnorr in [15].
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Figure 4. Bias in the repartition of lll reduced bases.

One could suppose that there is an equiprobability of getting one or another basis from the
reduction of a random generating family. But surprisingly the basis ℓn is never touched by
this process whereas κn is systematically obtained. Extensive experiments points out that
the probability of getting ℓn seems to be at least lower than 2−21 as soon as n ≥ 6. We
call such bases dark: informally, an LLL basis is dark if the experimental probability that
it is output by LLL given as input a random basis is negligible, especially with respect
to the number of LLL bases. The presence of dark bases appears not to be limited to
these specificlattices and is observable even in small dimensions. Such a behavior was
encoutnered and reported by Kim in [22]. Obviously, the lll reduction does prefer certain
bases over others in a given lattice. Understanding the distribution of dark bases may lead
to a better global understanding of the average behavior of lll.
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6. More Statistical Experiments on Integer Lattices

This section shows the result of additional experiments from Section 3.3 to check the
higher order moments E(Xk).

Figure 5 shows the 1st to 4th moments of the lattices in EIn,n and EIn logn,n.
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Figure 5. Experimental average of 1st to 4th moments. Statistics over M =
10, 000 bases. Left: b(n) = 3n. Right: b(n) = n logn.

Figure 6 shows the result of additional experiments on IGn,n for rank 2 and 15.
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