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Abstract. Quadratic form reduction and lattice reduction are fundamen-
tal tools in computational number theory and in computer science, especially
in cryptography. The celebrated Lenstra–Lenstra–Lovász reduction algorithm
(so-called lll) has been improved in many ways through the past decades and
remains one of the central method used for reducing integral lattice basis. In
particular, its floating-point variants—where the rational arithmetic required
by Gram–Schmidt orthogonalization is replaced by floating-point arithmetic—
are now the fastest known. Nonetheless, the systematic study of the reduction
theory of real quadratic forms or more generally of real lattices—in particu-
lar on the precision needed to represent lattices in such a way the reduction
can soundly operate—is not widely reprented in the litteratre despite its in-
trinsic interest. In this work, we present a sound adaptive-precision version
of a generalized lll algorithm working for lattices endowed with an arbitrary
scalar product, as well as a theoretical analysis of the representation needed
to perform such a reduction. In this framework, floating-point arithmetic is
replaced by Interval Arithmetic. The inherent certification property of Interval
Arithmetic enables runtime detection of precision defects in numerical compu-
tations and accordingly makes it possible to run the reduction algorithms with
guaranteed nearly optimal precision. We then present some applications of
these results to algebraic number theory, and more precisely develop certified
techniques for an algorithmic insight of the Geometry of Numbers in number
fields.

1. Introduction

In a general setting, a lattice Λ is a free Z-module of finite rank, endowed with
a positive-definite quadratic form on its ambient space Λ ⊗Z Q, as presented for
instance in [LS17]. This formalism encompasses the well-known Euclidean lattices
when taking the canonical scalar product of Qd, but also lattices arising from ideals
in rings of integers, projective modules over orders in number fields. The rank of
the lattice is defined intrinsically as the dimension of the vector space Λ ⊗Z Q.
Equivalently, by definition of a finitely-generated free module, there exists a finite
set of vectors b1, . . . , brk Λ ∈ Λ such that Λ =

⊕rk Λ
i=1 biZ. Such a family is called a

basis of the lattice and is not unique. In fact, as soon as rk Λ ≥ 2 there are infinitely
many bases of Λ. Among those some have interesting properties, such as having
reasonably small vectors and low orthogonality defect. They are called reduced bases
and finding them is the goal of lattice reduction theory. This has been crucial in
several fields of computer science and mathematics, for instance in cryptology, where
lattices have been used to break many public-key cryptosystems in the last decades:
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knapsack cryptosystems [LO85] or RSA in specific settings thanks to Coppersmith’s
method [B+99]. Moreover, numerous algorithms arising in algebraic number theory
rely heavily on lattice reduction, such as the computation of normal forms of integral
matrices (see [Jäg05] for the Hermite Normal Form and [HMM98] for the Smith
Normal Form), class group computations in a number field [GJ16, BF13], resolution
of the so-called principal ideal problem [EFGK16] or even the enumeration of points
of small height near algebraic curves [Elk00]. A revolutionary application was given
in 1985 by Odlyzko and Ed Riele in [OR85] to disproof the Mertens’ conjecture on
the cumulative function of the Möbius function. The link between lattices and
quadratic forms appears quite clearly when considering the Gram-matrix of a basis
B = {b1, . . . , bd}, that is the real symmetric matrix G = (〈bi, bj〉)i,j : the Sld(Z)-
action by right-multiplication on B directly translates to the usual Sld(Z)-action on
the coefficients of the n-ary quadratic form represented by the matrix G. Finding
Sld(Z)-equivalent quadratic forms with small coefficients is the target of quadratic
form reduction. Hence any quadratic form reduction algorithm turns out to be also
a lattice reduction algorithm, by applying the unimodular transformations used on
the form directly to the basis.

The study of these reduction problems is not recent and goes back to the early
works of Lagrange and Gauss, for integral binary quadratic forms1, and the in-
troduction of the so-called Gauss algorithm. This procedure can be seen as a 2-
dimensional extension of the Euclid algorithm for computing the greatest common
divisor of two integers. In 1850, Hermite published the first reduction algorithm
for arbitrary dimension2. A century later, in 1982, Lenstra, Lenstra and Lovász de-
signed the LLL algorithm [LLL82], with the polynomial factorization problem as an
application, after the celebrated work of Lenstra on integer programming [Len83].
This algorithm is a milestone in the history of lattice reduction algorithms, be-
ing the first algorithm whose running-time is polynomial in terms of the dimension.
This work has been improved in multiple ways by Kaltofen [Kal83], Schnorr [Sch87],
and Gama and Nguyen [GN08] among others, decreasing the time complexity or
improving the quality of the reduction.

Interval arithmetic is a representation of reals by intervals—whose endpoints are
floating-point numbers—that contain them. Arithmetic operations, in particular
the basic operations +,−,×,÷ can be redefined in this context. The main interest of
this representation lies in its certification property: if real numbers are represented
by intervals, the interval resulting from the evaluation of an algebraic expression
contains the exact value of the evaluated expression.

If the birth of Lattice Reduction is well-dated, it is not the case of Interval
Arithmetic. For some authors, it has been introduced by R. Moore in 1962 in
his Ph.D. thesis [Moo62]. For others, it can be dated back to 1958 in an article
of T. Sunaga [Sun09] which describes an algebraic interpretation of the lattice of
real intervals, or even sooner in 1931 as a proposal in the Ph.D. thesis [You31]

1Hence their works corresponds to the reduction of dimension two lattices with integral
coefficients

2Stricto sensu, he presented two algorithms, one for proving the existence of the so-called
Hermite constant which bounds the length of the shortest vector of a lattice, and the other which
allows finding bases with low orthogonality defect.
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of R.C. Young at Cambridge. Nonetheless, its development and industrial applica-
tions had to wait until 1980, and the momentum of U. Kulisch in Karlsruhe, leading
IBM to develop a specific instruction set and a compiler natively integrating In-
terval Arithmetic. Its main asset—calculating directly on sets—is nowadays used
to deterministically determine the global extrema of a continuous function [RR88]
or localizing the zeroes of a function and (dis)proving their existence [JKDW01].
Another application of Interval Arithmetic is to be able to detect lack of preci-
sion at run-time of numerical algorithms, thanks to the guarantees it provides on
computations.

This last application can lead to the design of adaptive precision numerical al-
gorithms. In the present paper, we propose to transform and generalize the lll al-
gorithm into an adaptive precision version, which reduces arbitrary lattices3. This
work leads to design a certified reduction algorithm whose main assets are:

• A general framework to algorithmically represents arbitrary real lattices
through Interval Arithmetic, together with a theoretical analysis on the
precision required to handle these representations – especially those ma-
nipulated by algorithms appearing in algebraic number theory.

• An algorithmic certification of the reduceness of bases of arbitrary real
lattices

• A certified version of the lll algorithm: its execution flow is the same
as the original integral version of lll. Thus, it can be used to perform
experiments on the behavior of lll and on the properties of the output
basis.

All in all this framework leads to a sound and provable algorithmic version of the
Minkovsky theory for the reduction of real quadratic forms.

Organisation of the paper. In Section 2 we briefly introduce reduction theory
and present the l2 variant of the lll algorithm. Section 3 aims at describing the ba-
sics of Interval Arithmetic used in Section 4 to handle the problem of representation
of real lattices. The framework of this latter section is then used in Section 5 to de-
rive a certified reduction algorithm for real lattices. Section 6 presents applications
of this methodology to algorithmic number theory.

Notations and conventions.

General notations. The bold capitals Z, Q, R and C refer as usual to the ring of
integers and respectively the field of rational, real and complex numbers. Given a
real number x, the integral roundings floor, ceil and round to nearest integer are
denoted respectively by bxc, dxe, bxe. Note that the rounding operator is inherently
ambiguous when operating on half-integers, and as such a convention has to be
chosen4. These operators are extended straightforwardly to operate on vectors and
matrices by point-wise composition. The complex conjugation of z ∈ C is denoted
by the usual bar z̄ whereas the real and imaginary parts of a complex z are indicated
by respectively R(z) and I(z) . All logarithms are taken in base 2.

3The original LLL algorithm only reduces integral Euclidean lattices, that is sublattices of Zd.
4Two rounding rules usually used are on the one hand to round half-integers to the nearest

even integer, or on the other hand to round them to the closest lower integer.
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Matrix and norms. For a fieldK, let us denote byKd×d the space of square matrices
of size d overK, Gld(K) its group of invertibles and Sd(K) its subspace of symmetric
matrices. For a complex matrix A, we write A† for its conjugate-transpose. For a
vector v, we denote by ‖v‖∞ its absolute (or infinity) norm, that is the maximum
of the absolute value of its coefficients. We similarly define the matrix max-norm
‖B‖max = max1≤i≤j≤d |Bi,j |, for any matrix B.

Computational setting. The generic complexity model used in this work is the
random-access machine (RAM) model and the computational cost is measured in
bits operations. M(k) denotes the complexity of the multiplication of two integers
of bit-length at most k.

2. A bird’s eye view on Reduction Theory

2.1. Remarks on the orthogonalization of vectors. Let us fix an Euclidean
space (E, 〈·, ·〉), that is, a real vector E space endowed with a positive-definite
quadratic form 〈·, ·〉 : E × E → R. Recall that two vectors x, y ∈ E are said to be
orthogonal—with regards to the form 〈·, ·〉—if 〈x, y〉 = 0. More generally a family
of vectors is orthogonal if its elements are pairwise orthogonal.

Now consider S = (v1, . . . , vd) a basis of E. The flag FS associated to S is the
data of the finite increasing chain of subspaces:

Rv1 ⊂ Rv1 ⊕Rv2 ⊂ · · · ⊂
r⊕
i=1

viR.

The orthogonal complement S⊥ is defined as the space {x ∈ E | ∀i, 〈x, vi〉 = 0}.
Denote by πi the orthogonal projection on (b1, . . . , bi−1)⊥, with the convention
that π1 = Id. The Gram–Schmidt process—shorthanded in gso—is an algorithmic
method for orthogonalizing S while preserving its flag, that is constructing the
orthogonal set S∗ = (π1(v1), . . . , πr(vr)). The computation S∗ can done inductively
as follow:

π1(v1) = v1

∀1 < i ≤ r, πi(vi) = vi −
i−1∑
j=1

〈vi, πj(vj)〉
〈πj(vj), πj(vj)〉

.

Define the Gram matrix associated to a family of vector S = (v1, . . . , vr) as the
matrix of scalar products: GS = (〈vi, vj〉)1≤i,j≤n. The (co)volume of S is defined
as norm of the exterior product vector v1∧· · ·∧vn, that is as the square root of the
Gram determinant detGS . It can also be easily computed with the Gram-Schmidt
vectors S∗ as:

covol(S) =

r∏
i=1

‖πi(vi)‖

2.2. Lattices and reduction.

Definition 2.1. A (real) lattice Λ is a finitely generated free Z-module, endowed
with a positive-definite quadratic form 〈·, ·〉 on its ambient space Λ ⊗Z Q, making
Λ discrete for the induced norm. By definition of a finitely-generated free module,
there exists a finite family b1, . . . , bd ∈ Λd such that Λ =

⊕d
i=1 biZ, called a basis

of Λ.
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We may omit to write down the quadratic form to refer to a lattice Λ when
any ambiguity is removed by the context. In all of this section, ‖.‖ stands for the
Euclidean norm induced by 〈·, ·〉, unless stated otherwise.

Two different bases of the same lattice Λ are related by a unimodular transfor-
mation, which is a linear transformation represented by an element of Gld(Z), set
of d × d integer-valued matrices of determinant ±1. The space of (real) lattices is
then homeomorphic to the quotient Gld(R)�Gld(Z). Thus, algorithms acting on lat-
tice bases can be seen as sequences of unimodular transformations to achieve their
goal. Among these procedures, so-called reduction algorithms are of the utmost
importance.

Reduction theory aims at giving general techniques to construct preferred and
congenial classes of bases, proving that for any lattice, one can efficiently find
quasi-orthogonal bases with controlled norm vectors. Roughly speaking, a basis
(b1, . . . , bd) is considered to be reduced with regards to a certain parameter δ < 1
if:

• ‖πi+1(bi+1)‖ ≤ δ‖πi(bi)‖
• When decomposing bi in πi(bi) +

∑
j<i αi,jπj(bj) we get |αi,j | ≤ 1

2 ,

where πi is the orthogonal projection on (bi+1, . . . , bd)
⊥ in the space (Λ⊗ZQ, 〈·, ·〉),

as introduced in Section 2.1. The reduction notion introduced here actually cor-
responds to the Siegel-reduction, and not lll-reduction, but its introduction eases
the presentation of the notion.

In order to prove that such bases exist, let outline a constructive proof which
lays the foundation of the lll-reduction algorithm. Starting with the data of the
initial basis (b1, . . . , bd), we proceed iteratively. Each step starts by considering the
set of projections (π1(b1), . . . , πd(bd)). Thanks to the geometry of the ring Z and
by cleverly choosing a linear combinations of the bi+1, . . . , bd, we can suppose that
the following decomposition holds:

bi = πi(bi) +
∑
j<i

αi,jπj(bj) with |αi,j | ≤
1

2
.

To enforce the decrease condition on the norms of the π1(b1), . . . , πd(bd), we greedily
swap bi and bi+1 as soon as the ratio ‖πi(bi)‖/‖πi+1(bi+1)‖ gets greater than the
desired constant δ.

2.3. The lll reduction algorithm. The above-introduced procedure is in sub-
stance the basic ingredient of the reduction presented in 1982 by Lenstra, Lenstra
and Lovász [LLL82]. They proposed a notion called LLL-reduction conjointly with
a polynomial time algorithm. Their reduction notion is formally defined as follows:

Definition 2.2 (lll reduction). A basis B of a lattice is said to be δ-LLL-reduced
for certain parameters 1/4 < δ ≤ 1, if the following conditions are satisfied:

(1) ∀i < j, |〈bj , πi(bi)〉| ≤
1

2
‖πi(bi)‖2 (Size-Reduction condition)

(2) ∀i, δ‖πi(bi)‖2 ≤
(
‖πi+1(bi+1)‖2 +

〈bi+1, πi(bi)〉
‖πi(bi)‖2

)
(Lovász condition)

Remarking that the orthogonal projection πi(bi) can be computed iteratively by
the Gram-Schmidt orthogonalization process, we can translate directly the sketch
of proof into an algorithm, presented in Figure 1.
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Remark. Note that the original algorithm from [LLL82] only deals with sublattices
of Zd, that is, any lattice of the form

⊕
i∈I biZ for (bi)i∈I ∈ (Zn)

I a linearly
independent family of integral vectors. The algorithm works in the exact same
manner for any integral scalar product, as remarked by Lovász and Scarf in [LS92].
For the sake of simplicity, the following exposition is conducted as in [LLL82] on
full-rank sublattice of Zd.

Algorithm 1: The original lll algorithm.

Parameters: δ ∈ (1/4, 1)
Input: Initial basis (b1, . . . , bd)
Result: A δ lll-reduced basis

1 Compute the πi(bi)’s with the gso process (Paragraph 2.1);
// Size-reduce each vectors.

2 for i = 2 to d do
3 for j = i− 1 to d do
4 bi ← bi −

⌈
〈bi,πi(bj)〉
‖πi(bi)‖2

⌋
· bj ;

5 end
6 end
// Test if the Lovász condition is fulfilled, swap if not.

7 for i = d− 1 downto 1 do
8 if δ‖πi(bi)‖2 >

(
‖πi+1(bi+1)‖2 + 〈bi+1,πi(bi)〉

‖πi(bi)‖2

)
then

9 Swap bi and bi+1;
10 goto 1;
11 end
12 end
13 return (b1, . . . , bd)

2.3.1. Decrease of the potential and complexity. The soundness the algorithm is di-
rect. Moreover, it terminates in polynomial time when δ < 1. A classical argument
relies on the study of the (square of the) product of the covolumes of the flag associ-
ated with a basis:

∏d
i=1 ‖π(bi)‖2(n−i+1), called potential. This value decreases by a

factor at least δ−1 in each exchange step and is left unchanged by other operations.
Indeed:

• Either a linear combination on bk of the previous vectors is performed and
the flag associated with the current basis is not altered.

• Or an exchange is done: assume without loss of generality that bk and
bk−1 are exchanged. Then, none of the n− 2 products ‖π1(b1) . . . πj(bj)‖2
for j ≤ k − 1 and ‖πj(bj) . . . πj(bd)‖2 for j ≥ k are modified. Since by
construction the exchange occurs if ‖πk−1(bk−1)‖2 shrinks by a factor at
least δ−1, then ‖π1(b1) . . . πk−1(bk−1)‖2 also decreases by the same factor.

Thus the number of exchange steps—and consequently of iterations—is bounded
by O

(
log ‖B‖maxd

2
)
where B is the matrix of the initial basis.

As the cost of a loop iteration is of O(dn) arithmetic operations on rational
coefficients of length at most O(d log ‖B‖max), the total cost in term of arith-
metic operations is loosely bounded by O

(
d6 log3 ‖B‖max

)
. By being more precise
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in the majoration of the bit-length of the integers appearing in lll, this anal-
ysis can be improved, e.g. in [Kal83] where Kaltofen bounds the complexity by
O
(
d5 log2 ‖B‖max
d+log ‖B‖max

M(d+ log ‖B‖max)
)
.

2.3.2. A bound on the norm of reduced elements.

Proposition 2.1. Let 1/4 < δ < 1 be an admissible lll parameter. Let (b1, . . . , bd)
a δ-lll reduced basis of rank-d lattice (Λ, 〈·, ·〉). Then for any 1 ≤ k ≤ d:

covol(b1, . . . , bk) ≤
(
δ − 1

4

)− (d−k)k
4

covol(Λ)
k
d

Proof. Using the Lovász condition at index 1 ≤ i < d, we have by orthogonality:

‖πi(bi)‖2 ≤ ‖πi(bi+1)‖2 = ‖πi(bi+1)‖2 + µ2
i,i+1‖πi(bi)‖2

Using the size-reduction condition we then derive that:

(3) ∀i ∈ {1, . . . , d− 1}, ‖πi(bi)‖2 ≤
(
δ − 1

4

)−1

‖πi+1(bi+1)‖2.

Let us denote by K the constant
√
δ − 1

4

−1

and `i the norm of the vector πi(bi),
so that inequalities of Equation (3) become:

∀i ∈ {1, . . . , d− 1}, `i ≤ K`i+1.

Remark that covol(Λ) =
∏d
i=1 `i by definition of the projections πi. Hence we

have:

covol(b1, . . . , bk)
d

=

(
k∏
i=1

`i

)n
=

(
k∏
i=1

`i

)k k∏
i=1

`d−ki︸︷︷︸
≤`k+1···`nK

(d+k+1−2i)(d−k)
2

≤

(
k∏
i=1

`i

)k( d∏
i=k+1

`i

)k
K

1
2

∑k
i=1(d+k+1−2i)(d−k)

= covol(Λ)
k
K

d(d−k)k
2

�

2.3.3. Floating point representation. The total cost of the lll algorithm is dom-
inated by the computation to handle the arithmetic with such representation of
rational values, creating a bottleneck in the computation in the reduction. A first
idea—introduced by De Weger in [Weg87]—to overcome this issue is to avoid the
use of denominators by multiplying all the quantities involved by carefully chosen
integers. While slightly more efficient in practice, the algorithm keeps the same as-
ymptotic behavior. However, it is remarkable that the norm of these rational values
remains small, and naturally leads to using approximations of the desired quanti-
ties, instead of computing with them in an exact manner. Translating directly the
lll algorithm with floating point approximations leads to severe drawbacks. First,
the whole algorithm might not terminate, and even if it does, the output basis is
not any longer guaranteed to be lll-reduced.

The seminal provable floating-point version of the algorithm is due to Schnorr
in [Sch88], leading to a complexity of O

(
d4 log(‖B‖max)M(d+ log ‖B‖max)

)
. One
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of the key ingredient to achieve this reduction is to slightly relax the definition of
the size-reduction, in order to compensate the approximation errors induced by the
use of floating-point arithmetic:

Definition 2.3 ((δ, η)-lll reduction). A basis B of a lattice is said to be (δ, η)-
LLL-reduced for certain parameters 1/4 < δ < 1 and 1/2 < η <

√
δ if the

following conditions are satisfied:

(4) ∀i < j, |〈bj , πi(bi)〉| ≤ η‖πi(bi)‖2 (Size-Reduction condition)

(5) ∀i, δ‖πi(bi)‖2 ≤
(
‖πi+1(bi+1)‖2 +

〈bi+1, πi(bi)〉
‖πi(bi)‖2

)
(Lovász condition)

Using naive multiplication, the cost of this is however still cubic in log(‖B‖max).
Number theory libraries and packages contain heuristic variants of the floating-
point version of Schnorr and Euchner [SE94], like ntl [Sho17]. Numerous variants
are built on this first version of Schnorr and Euchner, to eventually lead to the now
widely used and fastest provable floating-point variant of Nguyen-Stehlé L2 [NS09],
implemented in the library fplll [ABC+17].

2.4. The L2 algorithm. The l2 algorithm is a variant of Schnorr-Euchner version
of lll [SE94]. By contrast with the original algorithm, l2 computes the gso co-
efficients on the fly as they are needed instead of doing a full orthogonalization at
the start. It also uses a lazy size reduction inspired by the Cholesky factorization
algorithm.

The Gram-Schmidt orthogonalization on B leads to the QR-decomposition of
B into B∗ ·M where B∗ is the matrix representing the (πi(bi))1≤i≤d, and M is
the matrix of coefficients Mi,j = 〈bi,πi(bi)〉

‖πi(bi)‖2 . Thus, by considering the Gram matrix
associated to the basis5, one gets:

G = MT ·B∗T ·B∗ ·M = MTDM

for a diagonal matrixD, since the rowsB∗ are by construction orthogonal. Denoting
by R the matrix D ·M , we have:

G = RT ·M = MT ·R.

Hence, gso coefficients are obtained by computing the Ri,j inductively with the
formula:

Ri,j = Gi,j −
j−1∑
k=1

Mj,k ·Ri,k.

Computing the quotient Ri,j
Rj,j

yields by construction Mi,j . Furthermore, the actual

algorithm computes the quantities s(i)
j = ‖bi‖2−

∑j−1
k=1Mj,k ·Ri,k. for all 1 ≤ j ≤ i,

leading to a simple reformulation of the Lovász condition:

δ ·Rk−1,k−1 ≤ s(k)
k−1.

The Lazy Size-Reduction procedure is fully given in Algorithm 2 and the L2 algo-
rithm in Algorithm 3.

5Recall that G = BTB by definition.
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These optimizations improve the running time of the lattice reduction to

O
(
d5(d+ log(‖B‖max)) log(‖B‖max)

)
,

while still being provable.

Algorithm 2: The lazy size reduction algorithm, LazyRed.

Input: Initial basis (b1, . . . , bd)
Result: Basis B′, transformation matrices M , R, s

1 for j = 1 to k − 1 do
2 Ri,j ← Gi,j ;
3 for i = 1 to j − 1 do
4 Mi,j ← Rk,j/Rj,j ;
5 end
6 end
7 s

(k)
1 ← ‖bk‖2;

8 for j = 2 to k do
9 s

(k)
j ← s

(k)
j−1 −Mk,j−1 ·Rk,j−1;

10 end
11 Ri,i ← s

(i)
i ;

2.4.1. Precision required. The precision required by Algorithm 3 is

d log

(
(1 + η)2

(δ − η)2
+ ε

)
+ o(d)

bits for any ε > 0, i.e. almost linear in the dimension of the lattice. However,
as presented in [NS06], it appears experimentally that, even though this bound is
sharp, the number of bits required on average is lower.

Hence the challenge would be to manage to detect at run-time whether the
precision is sufficient or not to soundly perform the computation. Then it would be
possible to dynamically adapt the precision of the current computation and only
work with a quasi-optimal precision. All of this can be achieved using Interval
Arithmetic.

3. Interval Arithmetic and the certification property

3.1. A primer on Interval Arithmetic. In this section, we present briefly Inter-
val Arithmetic and focus on two types of representations of reals. For more details
the interested reader can consult a more extensive reference, such as [Moo77].

3.1.1. Interval Arithmetic in a nutshell. Interval arithmetic is a representation of
reals by intervals that contain them. For instance, one can specify that a value x is
given with an error ε by considering the interval [x− ε, x+ ε], or manipulating the
transcendent constant π with an error of at most 10−2 as the interval [3.14, 3.15].
Interval arithmetic is crucial in the context of certified numerical computations,
where reals can only be represented with finite precision.
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Algorithm 3: The L2 Algorithm.

Parameters: δ ∈ (1/4, 1), η ∈ (1/2,
√
δ).

Input: Initial basis (b1, . . . , bd)
Result: A (δ, η) lll-reduced basis

1 Compute G = G(b1, · · · , bd) in exact integer arithmetic;
2 R1,1 ← G1,1;
3 k ← 2; ;
4 while k ≤ d do
5 Apply length reduction LazyRed(k);
6 k′ ← k;
7 while k ≥ 2 and δRk−1,k−1 > sk

′

k−1 do
8 k ← k − 1;
9 end

10 Rk,k ← sk
′

k ;
11 if k 6= k′ then
12 for i = 1 to k − 1 do
13 Mk,i ←Mk′,i;
14 Rk,i ← Rk′,i;
15 end
16 Insert bk′ at pos k − 1 and update matrices M,R;
17 end
18 k ← k + 1;
19 end
20 return (b1, · · · , bd)

3.1.2. Towards an algebra of Intervals. In the following, we denote by x an interval,
by x−—resp. x+—its lower value—resp. its greatest value—, that is to say: x =
[x−, x+]. Define its diameter as the positive real x+−x− and its center as the real
1
2 (x+ + x−). We can now define abstractly an arithmetic on intervals:

Definition 3.1. Let ./ be a binary operation—resp. f be a function—over the reals,
then the result x ./ y of the operation between the intervals x and y—resp f(x),
result of the application of f—is the smallest interval, in the sense of inclusion,
containing

{x ./ y|(x, y) ∈ x× y} —resp. {f(x)|x ∈ x}—.

For usual representations of reals, one can easily derive closed formulae for the
arithmetic of the elementary operators. However, in the context of actual compu-
tations, requiring the equality in the above definition for arbitrary functions is in
most case illusory, since reals cannot be represented exactly. Yet, only the inclusion
of the result interval in the last defined sets is required to ensure the most desired
property of interval arithmetic: certification of computations.

3.2. Representations of reals. We now present two different kind of representa-
tions of reals with intervals.
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[
x−, x+

]
+
[
y−, y+

]
=
[
x− +− y−, x+ ++ y+

][
x−, x+

]
−
[
y−, y+

]
=
[
x− −− y−, x+ −+ y+

][
x−, x+

]
×
[
y−, y+

]
=
[
min−(ρ),max+(ρ)

]
where ρ = x−y−, x+y−, x−y+, x+y+[

x−, x+
]−1

=

[
min−(

1

x+
,

1

x−
),max+(

1

x+
,

1

x−
)

]
++, +− are here respectively the + operator with higher approximation and with lower

approximation. Same goes for the −+,−−,min−,max+ operators.

Figure 1. Basic arithmetic operators in Interval Arithmetic

3.2.1. Integral representation. A naive yet convenient way to represent reals at finite
precision is to use integers to represent the bounds of intervals. Specifically, this
corresponds to consider integers made from the most-significant bits of the binary
expansion of the desired reals. Formally, we have:

Definition 3.2 (Integral representation of reals). Let x ∈ R be an arbitrary real
number and n > 0 a non-negative integer. Define its integral representation at
accuracy6 n as the symmetric interval centered on b2nxe of diameter 1, that is to
say th interval:

xn =

[
b2nxe − 1

2
, b2nxe+

1

2

]
Remark. The interval xn only needs to be represented as its center, since its bounds
are simple translations of it, allowing thus a compact representation of the whole
interval as a single integer. Notice that the space complexity of this representation
is a function of the magnitude of the value x represented: it acts as an offset to the
accuracy, its size being n+ dlog xe bits.

3.2.2. Interval Arithmetic and Floating-point approximations. Another way to han-
dle real values is to use floating point representation. Interval Arithmetic can indeed
be used to handle exact reals by manipulating intervals whose bounds are repre-
sented by floating-point numbers at given precision. More precisely, if we denote
by bxcn and dxen respectively the largest floating-point number below x and the
lowest floating-point number above x written with n bits, the tightest floating-point
representation of x with n-bits of precision is the interval In(x) = [bxcn, dxen].

Explicitly, when approximating reals with floating point ends, basic arithmetic
operations transpose directly into the formulae of the Figure 1.

3.3. Certification property and inequality testing. When real numbers are
represented by intervals, the interval resulting from the evaluation of an algebraic
expression contains the exact value of the evaluated expression. More precisely, for
any family (xi)1≤i≤n of reals, and (xi)1≤i≤n intervals such as for each i, xi ∈ xi,
then

f(x1, . . . , xn) ∈ f(x1, . . . , xN ),

for any algebraic expression f . Therefore the results given in Interval Arithmetic
are certified.

6We use here the denomination of "accuracy" instead of "precision" to avoid confusions with
the floating-point precision as defined in paragraph 3.2.2.
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For instance, and this is the main aspect we are using in the present work, one
can compare in a certified manner a value δ with a real x, represented by x in
Interval Arithmetic with floating-point representation at precision n:

• Either x+ ≤ bδcn, which certifies that x ≤ δ.
• Either x− ≥ dδen, which certifies that x ≥ δ.
• Or δ ∈ x, and then the precision chosen is not sufficient to conclude.

If this test fails, one is only informed that the interval x is too large to certify
the desired property, allowing to conclude that the precision chosen is not suffi-
cient to assert the inequality. This disjunction is easily adapted to the integral
representation setting.

In short, Interval Arithmetic used in such a way allows detecting a lack of pre-
cision or accuracy at runtime of a numerical algorithm.

4. Approximate lattices

4.1. Matrix representation and positive-definiteness.

4.1.1. Integral representation of matrices. The Interval Arithmetic framework can
be extended to represent real-valued matrices, in particular with the integral rep-
resentation presented in Definition 3.2.

Definition 4.1 (Matrix integral representation). Let A = (ai,j)i,j ∈ Rd×d an
arbitrary real matrix of size d and n > 0 be a fixed positive integer. The matrix of
intervals

An = (ai,j
n
)1≤i,j≤d,

is said to integrally represent A at accuracy n.

We may omit the subscript n when the accuracy is clear from the context. Let
us broaden the meaning of the ∈ inclusion operator to matrix representation as
follows: for a matrix A, define B ∈ An as being ∃∆ ∈ [− 1

2 ,
1
2 ]
d×d

, B = b2nAe+ ∆.
Since in essence, the integral representation relies on a scale of coefficients, when
studying matrix representations we are interested in sets of matrices which remain
invariant under scaling, that is under any linear operator of the form M 7→ αM ,
for α > 0 a non-negative real. For instance the set of non-singular (resp. positive-
definite) matrices over R shares this property by multilinearity of the determinant
(resp. by multiplicativity of the eigenvalue map). In order to approximately rep-
resent lattices within the framework of interval arithmetic, we aim at representing
the inner product of lattices. This boils down to represent positive-definite real
matrices. The systematic treatment of this question is the goal of next section.

4.1.2. Minimal representation of positive-definite matrices. Let us fix d a non-
negative integer and A ∈ S++

d (R) a symmetric positive-definite matrix. As pre-
sented in Section 3.3 when representing a positive real x by an interval x, we can
only assert that x is positive if every element of the interval x is positive. The
natural extension of this property to positive-definite matrices is encoded in the
following definition:

Definition 4.2 (Positive-definite representation). Let n be a fixed positive integer.
Let S ∈ S++

d (R) a symmetric positive-definite matrix. A representation Sn of S is
positive-definite if every symmetric matrix S′ ∈ Sn is positive-definite.
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Clearly, if a representation of A is positive-definite at accuracy n, then it is
also the case for any representation at greater accuracy n′ ≥ n. Hence, given a
fixed matrix, a natural question is to determine the minimal accuracy n0 needed to
obtain a positive-definite representation:

Lemma 4.1. Let S = (si,j)i,j ∈ S++
d (R) a symmetric positive-definite matrix of

size d, then the minimal accuracy required to get a positive-definite representation
is bounded as follow:

max

(⌊
1

2
log d− log λd(S)

⌋
, 0

)
≤ n0 ≤ max(dlog d− log λd(S)e, 1)

where λd(S) is the least eigenvalue of S.

Proof. Let n ∈ N and S a symmetric positive-definite.
• Lower bound : Let S′ be a symmetric matrix in S̄n. By definition there

exists ∆′ a symmetric matrix with all entries in the real interval
[
− 1

2 ,
1
2

]
,

such that S′ = b2nSe+ ∆′. Moreover there exists ∆′′ a symmetric matrix
with all coefficients in [− 1

2 ,
1
2 ], such that b2nSe = 2nS + ∆′′. Now write

∆ = (δi,j) for the sum ∆′ + ∆′′ of these two perturbations matrices; hence
‖∆‖max ≤ 1 by construction. By virtue of Spectral Theorem (see [HJ12]
for a comprehensive reference), the real symmetric matrices S′ and ∆ are
diagonalizable with real spectrum, so that one can consider their respective
least eigenvalue λd(S′) and λd(∆). By Weyl’s first inequality (See [Wey12]),
λd(S

′) ≥ 2nλd(S)+λd(∆). Thus if 2n > −λd(∆)
λd(S) then S′ is positive-definite.

Denoting by ∆i the columns of ∆ we have by Hadamard’s inequality:

det ∆ ≤
d∏
i=1

‖∆i‖2 ≤

max
1≤i≤d

√√√√ d∑
j=1

|δi,j |2

d

≤ d d2 ,

yielding |λd(∆)| ≤
√
d. Plugging back in the previous inequality and taking

the logarithm recovers the left hand side of the announced result.
• Upper bound : Let ∆ = (−1)1≤i,j≤d. A simple calculation ensures thatXd+
dXd−1 = Xd−1(X + d) is the characteristic polynomial of ∆, and therefore
that λ1(∆) = −d. Notice that we have from Weyl’s second inequality
(See [Wey12]):

λd(S + ∆) ≤ 2nλd(S) + λ1(∆) = 2nλd(S)− d,
Hence if 2nλ(S) < d, then λd(S + ∆) is negative, so that S + ∆ is not
definite positive. Since (S + ∆) ∈ Sn, this implies that the interval matrix
Sn is not positive definite. As before, we just have to take the logarithm
to conclude.

�

4.2. Representation of lattices. In all of the following we fix a lattice (Γ, 〈·, ·〉)
of rank d, its ambient space V = (Γ⊗Q, 〈·, ·〉), as well as γ = (γ1, . . . , γd) one of
its basis.

Now consider a rank r ≤ d sublattice Λ ⊂ Γ represented by a generating family
` = (`1, . . . , `p). Therefore the triple (V, γ, `) univoquely describe the lattice Λ.
Remark that ` can be encoded as a d × p integral matrix L, which is its matricial
representation in the basis γ, and the inner product 〈·, ·〉 by the d×d Gram-matrix
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Gγ = (〈γi, γj〉)1≤i,j≤d. This last matrix is a priori real-valued and thus, must be
approximated at finite precision to be computationally handled, for instance with
the integral representation introduced in Section 4.1.1. All of these considerations
lead to the following definition:

Definition 4.3 (Approximate representation of a lattice). Let Gγ and L as above
and n a non-negative integer. Denote by G the matrix of centers of the integral
representation Gγ

n
at accuracy n of the Gram-matrix Gγ . Then the pair (G,L) ∈

Zd×d×Zd×p of integral matrices is said to represent at accuracy n the lattice Λ in
the basis γ of Γ.

4.2.1. Computation of the inner product. By the certification property of the In-
terval Arithmetic, the computation of the scalar product of two vectors a, b ∈ Λ
from the interval matrix represented by the matrix G is yields intervals containing
its exact value 〈a, b〉. Formally let us consider the (column) vectors of integers A
and B representing respectively the elements a, b ∈ Λ in the basis γ. Whence, the
inner product 〈a, b〉 is by definition of Gγ and G:

(6) 〈a, b〉 =
1

2n

ATGB +AT · [2nGγ −G] ·B︸ ︷︷ ︸
≤ 1

2 (
∑
i |Ai|)(

∑
i |Bi|)

,
the inequality resulting from the bound ‖2nGγ −G‖max ≤ 1. Equation (6) actually
states that the value of the (scaled) inner product 2n〈a, b〉 is contained in the interval
〈a, b〉n centered on the integer AT · b2nGe ·B of diameter 2−n−1(

∑
i |Ai|)(

∑
i |Bi|).

4.2.2. Proper representation. A lattice is by definition discrete in its ambient space;
in particular, the infimum λ1(Λ) of the norm of non-zero elements in the lattice is
attained and is strictly positive. By analogy with sublattices of Zd, it is technically
convenient to re-scale the original inner product of the lattice to impose λ1(Λ) ≥ 1.
The encoding of this property in the interval framework is imposing the interval
‖x‖n =

√
〈x, x〉n representing the norm of a non-zero vector x ∈ Λ to be greater

than 1, as an interval. By Equation (6) this condition is equivalent to Gγ
n
− 2−nId

being positive definite. Such a representation is said to be proper :

Definition 4.4 (Approximate proper representation of a lattice). Let (G,L) be a
pair of integral matrices representing at accuracy n a lattice Λ in a basis γ. This
representation is said to be proper if for any non zero vector x ∈ Λ, ‖x‖n > 1, that is
if Gγ

n
−2−nId is positive definite as an integer interval matrix (see Definition 4.3).

The characterization of Lemma 4.1 extends naturally into the following bounds
for proper representation.

Proposition 4.1. The minimal accuracy n0 needed for a representation (G,L)
representation of the lattice (Λ, 〈·, ·〉) satisfies:

max
(⌊

log(1 +
√
d)− log λd(SB)

⌋
, 0
)
≤ n0 ≤ max(dlog(1 + d)− log λd(SB)e, 1)

4.3. Lattice reduction as a computational problem. Suppose now that the
Gram-matrix Gγ = (〈γi, γj〉)1≤i,j≤d representing the inner product of the ambient
space Γ ⊗Z Q is unknown but that we are given an oracle Oγ that can computes
its representation at any accuracy.
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The computational problems associated with reduction theory can be then writ-
ten in the exposed framework as:

Problem (Lattice Reduction for proper reprentation). Let δ, η be admissible lll pa-
rameters. Given L ∈ Zp×d encoding a sublattice Λ in the basis γ of Γ, as well as the
oracle Oγ , find a basis represented by L′ ∈ Zd×d in γ, which is a (δ, η)-lll reduced
basis of Λ.

4.3.1. Accuracy of representation and space complexity. Let (G,L) represents Λ
at accuracy n ∈ N∗ in the basis γ, then the magnitude of the coefficients of G
is 2n times the magnitude of the coefficients of Gγ , and thus G needs at most
O
(
d2(n+ log ‖Gγ‖max)

)
bits to be encoded. bits. Suppose that the matrix Gγ

satisfies ` = λd(Gγ) > d—implying that its determinant is exponentially large
w.r.t the dimension, being at least equal to 2d log(d)—, then the minimal accuracy
required to get a proper representation is at most 1 by Proposition 4.1. Hence, the
space occupation of the representation of S is a O

(
d2 log ‖Gγ‖max

)
. But we can

do slightly better by taking advantage of the magnitude of `. Indeed the re-scaled
matrix d`−1Gγ has now d for least eigenvalue. Notice then that by Proposition 4.1
the minimal accuracy required to get a proper representation is still at most 1, but
the space complexity collapses to O

(
d2(log ‖Gγ‖max − log `+ log d)

)
. This space

optimization also induces an improved running-time for the reduction algorithm, its
complexity being a function of the magnitude of the inner product representation7,
as presented in Section 5.3.

5. Generalized lll reduction with Interval Arithmetic

5.1. Interval Arithmetic l2 reduction. Like previously, we fix a lattice (Γ, 〈·, ·〉)
of rank d and γ = (γ1, . . . , γd) one of its a basis. Let (G,L) be a proper represen-
tation of a (sub)lattice Λ ⊆ Γ at accuracy n in γ.

5.1.1. Using Interval Arithmetic in lll. In order to benefit from the certification
property evoked in Section 3.3, we use interval representation—with floating-points
bounds—for handling floating-point variables appearing in the l2 algorithm. An
internal precision p0 is chosen to represent the bounds of these intervals. Modifying
the l2 algorithm in such a way implies to transform the conditional statements,
which are inequalities between floating-point values, by the tests over intervals
described in Section 3.3. It is then possible to detect at runtime whether this
choice of precision was sufficient to achieve a provable reduction. Indeed, in the
case where the Lovász condition test detects a precision defect, the reduction stops
and yields an error. Hence, we change the code from line 7 to 9 in Algorithm 3 to
handle this possibility, where a test between two intervals a and b, (a > b) returns
either a Boolean value if the result can be certified thanks to Interval Arithmetic,
either ⊥ if not. Notice that in practice, in order to optimize the update of the Gram-
matrix (and related quantities) of the current basis after unimodular operations,
we do not recompute it entirely from scratch. On the contrary, we only update the
coefficients by applying matrix congruence. The drawback of this faster approach
is to amplify the diameter of intervals at each iteration. Hence, if a precision error
is detected we replay the last iteration of the reduction with a freshly computed

7Computationally speaking, this corresponds to perform the reduction on only the most sig-
nificant bits of Gγ .
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Gram-matrix, which contains the least error possible with regards to the available
data. If an error is still detected, the algorithm eventually yields a precision error.
We name this modified procedure ll and fully present it in Algorithm 4.

5.1.2. Soundness and internal precision. One naturally wonders if the precision
needed by the reduction procedure ll to correctly run can be bounded indepen-
dently of the coefficients appearing in the matrices G and L. This is the case thanks
to the properness of the representation and one can even derive an explicit estimate
of the required precision :

Theorem 5.1. Let (Λ, 〈·, ·〉) a rank d lattice, properly represented at accuracy n
by the pair (G,L). The ll(Algorithm 5) at most

T (d, δ, η, ε) =

⌈
d log

[
d

2
d

(1 + η)2 + ε

ε(δ − η2)

]
+ 10

⌉
bits to soundly reduce the lattice Λ, for any ε > 0, where ε = min

(
η − 1

2 , 1− δ
)
the

minimum distance of the chosen lll parameters to the (theoretical) parameters 1
2

and 1.

For usual choices of parameters—δ close to 1 and η close to 1/2—the bound
T (d, δ, η, ε) of Section 5.1.2 reduces roughly to 1.6d + o(d). This last bound is
tight in the sense that some lattices require such a complexity to be reduced by
adaptive-lll. However, in [NS06], Nguyen, and Stehlé presented an experimental
heuristic on the precision required by l2 to safely perform its computation. This
heuristic is still experimentally valid when reducing arbitrary real lattices with
adaptive-lll:

Heuristic 5.1 (Adapted from [NS06]). For most lattices, given as an arbitrary
generating family, a precision of 0.25d + o(d) bits for floating-point calculations is
sufficient for the adaptive-lll to run correctly.

5.2. Towards adaptive precision and accuracy.

5.2.1. Adaptive precision. Since by construction the ll Algorithm allows detecting
if the choice of internal precision p0 was sufficient to soundly reduce the lattice Λ,
one can naturally wrap this procedure in a loop that double the precision p0 each
time an error is caught. This yields an adaptive precision reduction algorithm.
Depending on the internal representation used, the cost of Interval Arithmetic with
floating-point representation of bounds is up to 4 times the cost of classical large-
precision floating-point arithmetic. However, since the complexity of floating-point
multiplication is superlinear and the precision growth is by design geometric, the
total complexity of the adaptive-lll is asymptotically dominated by the reduction
performed at the maximal precision8.

5.2.2. Adaptive accuracy. Let us recall that the lattice (Γ, 〈·, ·〉) of rank d and γ =
(γ1, . . . , γd) one of its a basis are fixed. Suppose that an oracle Oγ that outputs
an integral representation of the Gram-matrix Gγ = (〈γi, γj〉)1≤i,j≤d at arbitrary
accuracy is also given. We consider a sublattice Λ ⊆ Γ, described by L ∈ Zp×d in
γ and aim at solving the lattice reduction problem, stated in Section 4.3. Let us
choose n0 an arbitrary accuracy and denote by Gn0

= Oγ(n0) the output of the

8In practice, for lattices of rank few hundreds it appears nonetheless that the computational
cost of the first iterations lies between 20% and 40% of the total cost.
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Algorithm 4: The ll Algorithm.

Parameters: δ ∈ (1/4, 1), η ∈ (1/2,
√
δ) admissible lll parameters, p0 ∈ N

the internal precision used for floating-point representation.
Input: γ a basis of a lattice (Γ, 〈·, ·〉).
Input: An approximate representation (G,L) of a sublattice Λ ⊂ Γ at

accuracy n in the basis γ.
Result: A (δ, η) lll-reduced basis represented as L′ ∈Mn(Z).

1 k ← 2 ;
// Compute the Gram matrix of the basis represented by L, as in

Section 4.2.1.
2 Compute GramL←

([
LTi GLj − ‖Li‖1‖Lj‖1;LTi GLj + ‖Li‖1‖Lj‖1

])
1≤i,j≤d ;

3 fresh ← true;
4 R1,1 ← GramL1,1;
5 while k ≤ d do
6 Apply size-reduction LazyRed(k);
7 k′ ← k;
8 while k ≥ 2 do
9 ret ← (δ ·Rk−1,k−1 > sk

′

k−1);
10 if ret = true then
11 k ← k − 1;
12 else if ret = false then
13 break;
14 else
15 if fresh = true then
16 return ErrorPrecision;
17 else

// Force the re-computation of the inner products
directly from SB.

18 goto 2;
19 end
20 end
21 Rk,k ← sk

′

k ;
22 if k 6= k′ then
23 for i = 1 to k − 1 do
24 Mk,i ←Mk′,i;
25 Rk,i ← Rk′,i;
26 end
27 Insert Lk′ at position k − 1 in L;

// Done by applying the corresponding matrix unimodular
transformation.

28 Update matrices M,R;
29 fresh ← false;
30 end
31 k ← k + 1;
32 end
33 return (L)
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oracle when feed with n0. By definition this means that (Gn0
, L) is a representation

of Λ in γ at accuracy n0, even thought non necessarily proper. Suppose now that
we launch the adaptive precision reduction (Section 5.2.1) on the pair (Gn0 , L).
Two outcomes are possible:

• Either the precision goes beyond the theoretical bound T (d, δ, η, ε), meaning
that the representation (G,L) is not proper by virtue of Theorem 5.1.

• Either the reduction terminates9.
Since we don’t know a priori the accuracy needed to obtain a proper representation
of Gγ , the last case analysis leads to the same design principle as for the precision:
wrapping the whole reduction procedure in a loop that double the accuracy each
time an error is raised. The full outline of this strategy is exposed in Algorithm 5.

Algorithm 5: The adaptive-lll algorithm.

Parameters: δ ∈ (1/4, 1), η ∈ (1/2,
√
δ.), p0 ∈ N initial precision of the

algorithm for floating-point representation, n0 initial accuracy
for representing the scalar product.

Input: γ a basis of a lattice (Γ, 〈·, ·〉), and Oγ(n) an oracle that compute the
integral representation of the inner product 〈·, ·〉 at accuracy n.

Input: A generating family represented by L in γ of a sublattice Λ ⊂ Γ.
Result: A (δ, η) lll-reduced basis of Λ represented as L′ ∈ Zrk(Λ)×rk(Λ).

1 prec ← p0;
2 accu ← n0;
3 G← Oγ(accu);
4 succeed ← false;
5 repeat
6 prec ← prec×2;
7 if ll(G,L) 6= ErrorPrecision then
8 succeed ← true;
9 end

// T(d, δ, η) is the theoretical bound of Theorem 5.1
10 if prec > T(d, δ, η,min

(
η − 1

2 , 1− δ
)
) then

// Not enough accuracy to represent the inner product
11 accu ← accu×2;
12 G← Oγ(accu);
13 end
14 until succeed = true;
15 return (L)

5.3. Remarks on time complexity of adaptive-lll. The adaptive-lll al-
gorithm terminates since there exists a minimal accuracy at which the representa-
tion of the lattice becomes proper by Theorem 5.1. We can be more precise and
estimate the complexity of the full reduction:

9This means that the representation is in fact proper.
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Theorem 5.2. Let (Λ, 〈·, ·〉) a rank d lattice represented by a generating family L
in a basis γ ∈ Γd. Let n0 be the minimal accuracy needed on representations of Λ
to be proper. Then:

• The adaptive-lll (Algorithm 5) operates in at most

O
(
d3(log ‖B‖max + n0 + log ‖S‖max)(n0 + d+ log ‖B‖max + log ‖L‖max)M(d) + log(n)COγ (n0)

)
arithmetic operations, where COγ (n0) is the complexity of one call of the
oracle Oγ on the input n0.

• When the scalar product 〈·, ·〉 is integral, the previous complexity reduces to:

O
(
d3(log ‖B‖max + log ‖S‖max)(d+ log ‖B‖max + log ‖S‖max)M(d)

)
arithmetic operations.

In the case where we are using the identity matrix as inner product10. Under
Heuristic 5.1, the adaptive-lll algorithm gains a constant factor on the proved
version of l2, corresponding to the gap between mandatory precision on the average
and on the worst-case, while still being a provable reduction.

6. Application in Algebraic Number Theory: towards computational
Minkovsky theory.

Let recall some basic facts on algebraic number theory to point out the emergence
of a natural class of lattices, the so-called ideal lattices.

6.1. Number Fields. Let K = Q(α) be a number field of dimension d, then
there exists a monic irreducible degree-d polynomial P ∈ Z[X] such that K ∼=
Q[X]�(P ) and P (α) = 0. Denoting by (α1, . . . , αd) ∈ Cn its distinct complex
roots, each embedding—i.e. field homomorphism—σi : K→ C is the evaluation of
a ∈ K, viewed as a polynomial modulo P , at the root αi, that is σi : a 7→ a(αi).
Classically, embeddings arising from the real (resp. complex) roots are called real
(resp. complex) embeddings. With r1 real roots and r2 pairs of complex roots—
d = r1 + 2r2 —, we have K⊗Q R ∼= Rr1 ×Cr2 ∼= Rd, the isomorphism being given
by the Archimedean embedding, defined as:

σ :

∣∣∣∣∣∣
K⊗Q R −→ Rr1 ×Cr2 −→ Rd

x 7−→ (σ1(x) . . . σr1(x)︸ ︷︷ ︸
r

, σr1+1(x) . . . σr1+r2(x))
T︸ ︷︷ ︸

c

7−→
(
r,
√
2R(c),

√
2I(c)

)T
where σ1, . . . , σr1 are the real embeddings and σr1+1, . . . , σn are the complex em-
beddings for which σr1+j is paired with its complex conjugate σr1+r2+j . The num-
ber field K is then viewed as an Euclidean R-vector space endowed with the inner
product

〈a, b〉σ =
∑

σ:K→C

σ(a)σ(b)

where σ ranges over all the r1 + 2r2 embeddings K → C. Whence, we can derive
from this inner product a Euclidean norm ‖ · ‖ over K.

6.2. Ring of integers, integer ideals.

10That is reducing so-called integral Euclidean lattices.
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6.2.1. Integers, orders, and ideals. An element γ of K is said to be integral if its
minimal polynomial has integral coefficients and is monic. The ring of integers, oK,
or maximal order, of K is the ring of all integral elements contained in K. More
generally a free Z-module o embedded in K, such as Qo = K is called an order
of K, and necessarily lies in oK. As a finite-rank sub-module of the field K, there
exists a finite family (γi)i∈I , called an— integral—basis of the order, such that

o ∼=
⊕
i∈I

γiZ.

An additive subgroup a of o for which the coset a · o = {a · x|x ∈ o} lies in a for
every a ∈ a, is called an ideal of the number field.

6.2.2. Canonical embedding and ideals. The Archimedean embedding endows any
integral ideal a of an order o with a lattice structure, namely as (a, 〈·, ·〉σ).

In particular, any order (o, 〈·, ·〉σ)) is also a lattice. The square of its (co)volume,
denoted by ∆o, is called its discriminant. Therefore, one can compute the discrim-
inant as a determinant: for γ = (γ1, . . . , γn) an integral basis of o, we have

∆o = det(Gγ) =

∣∣∣∣∣∣∣∣∣∣
det


σ1(γ1) σ1(γ2) · · · σ1(γn)

σ2(γ1)
. . .

...
...

. . .
...

σn(γ1) · · · · · · σn(γn)


∣∣∣∣∣∣∣∣∣∣

2

,

where Gγ =
(∑

σ σ(γi)σ(γj)
)
i,j

is the Gram-matrix associated to γ.

Specifically, the discriminant of the maximal order, denoted by ∆K is called
discriminant of the field. Loosely speaking, the discriminant is a size measurement
of the order. This is one of the reason it is used to express the complexity when
working with number fields or rings of integers.

6.2.3. Equation orders. An integer θ ∈ K defines univoquely an order Z[θ] ⊆ oK,
called equation order defined by θ, where

Z[θ] = {R(θ) | R ∈ Z[X]} =

δ−1⊕
i=0

θiZ,

with δ the degree of its minimal polynomial. In particular, when considering α a
root of a defining polynomial f ofK, the order Z[α] is full-rank in oK, a natural basis
of this order being the power-basis A = (1, α, . . . , αd−1). Such an order is called
a principal equation order of K. By definition of the Archimedean embedding,
the Gram-matrix GA associated to Z[α] in A is the product of the Vandermonde11

matrix Vσ = V (σ1(X), · · · , σd(X)) by its conjugate-transpose. Its general term is
then:

Vσ · V †σ =

(
d∑
k=1

αikαk
j

)
1≤i≤j≤d

.

11We recall that the Vandermonde matrix is a matrix with the terms of a geometric progression
in each column, i.e., an m× n matrix of general term

Vi,j = αi−1
j .
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Algorithm 6: The inner product representation oracle.

Input: A monic irreducible polynomial P ∈ Z[X].
Input: A basis γ = (γ1, · · · , γn) of an order o in a number field

K ∼= Q[X]�(P ).
Input: A non negative integer n.
Result: An integral representation at precision n of Gγ = (〈γi, γj〉)i,j .

1 precRoots ← n0; d← degP ;
// (Re)compute the canonical embeddings.

2 (α1, . . . , αd)← FindRoots(P, precRoots);
3 for i = 1 . . . d do
4 for j = 1 . . . d do
5 σi(γj)← γj(αi);
6 end
7 end
// Derive the inner product matrix in γ.

8 for i = 1 . . . d do
9 for j = 1 . . . d do

10 G←
∑d
k=1 σk(γi)σj(γj);

11 end
12 end
13 return b2n ×Ge;

6.3. Practical reduction theory for ideals. In all of the following we fix K =

Q(α) ∼= Q(X)�(P ) a number field and o one of its order, as well as γ = (γ1, . . . , γd)

a basis. The scalar product of the corresponding lattice is then naturally the matrix
Gγ above-defined. Now consider an ideal a ⊆ o, presented by a generating family
(a1, . . . , ar) as Z-module. Decomposing each vector ai in the basis γ yields a matrix
A ∈ Zd×r.

This is precisely the setting of the reduction problem described in Section 4.3. In
order to run the adaptive-lll procedure described in Section 5.1, we need to com-
pute the matrix Gγ at sufficient precision, in order to derive a proper representation
of the lattice. This falls back to the computation of the values of the Archimedean
embedding on the basis elements γi, which is a simple polynomial evaluation over
the set of complex roots of the defining polynomial P of K. Hence, the key step
of the determination of the inner product matrix reduces to the root-finding prob-
lem in the complex plane with guaranteed error terms solved for instance by the
Gourdon-Schönhage algorithm [Gou96]. The full outline of the corresponding Or-
acle Oγ is given in Algorithm 6.

Theorem 6.1. Let K ∼= Q[X]�(F ) a number field defined by the polynomial F
of height H(F ). Fix an order o ∈ oK and one of its basis γ, given as a list of
polynomials of height bounded by H(B). For an ideal a given by a Z-basis B in γ,
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the adaptive-lll operates in at most

O
[
d3(log ‖B‖max + n0 + log(logH(B) + d logH(F )))

(n0 + d+ log ‖B‖max + log(logH(B) + logH(F )))M(d)
]
,

arithmetic operations, with n0 being the accuracy needed on the representation of
the ideal lattice (a, 〈·, ·〉σ)to be proper.

Proof. Like in Algorithm 5, the whole complexity is dominated by the last iteration
of the outer loop, by superlinear complexity of the arithmetic with regards to the
precision used. Let then focus on the body of this loop.

Let first evaluate the (maximal) precision needed on the computation of the
roots. With the notations of the theorem, we claim that the entrees of the represen-
tation S are bounded by d3H(B)2H(F )2(d−1). Indeed, let take p, q ∈ γ, represented
in K as polynomials P,Q. Then:

|〈p, q〉| ≤
∑
σ

|σ(p)||σ(q)| (Triangle inequality)

=
∑

α root of P

|P (α)||Q(α)| (Definition)

≤
∑

α root of F

(
dH(B) max(|α|, 1)

d−1
)2

(Triangle inequality)

≤
∑

α root of F

(
dH(B)H(F )d−1

)2
(Cauchy’s bound)

≤ d3H(B)2H(F )2d−2.

Hence by denoting as before by n0 the accuracy needed on the representation of the
lattice to be proper, one needs at most O(n0 + logH(B) + d logH(F )) bits of preci-
sion on the result of the evaluation of 〈p, q〉. Since the computation (in floating-point
arithmetic) of the polynomial evaluation of one of the P (αi) or Q(αi) requires Θ(d)
additions and multiplications, and that the sum over the roots consists on Θ(d) addi-
tions and multiplications, we need at least a O(n0 + logH(B) + d logH(F ) + d) =
O(n0 + logH(B) + d logH(F )) bits of precision on the roots α1, . . . , αn, to ensure
a correct computation.

Let then evaluate the complexity of the root-finding sub-procedure of Algo-
rithm 6. The complexity of the root-finding procedure at precision µ for a polyno-
mial of height bounded by H and roots of magnitude at most 2m is a

O
(
d log5 d log(H + µ)M(d2 max(m, d)))

)
by the analysis performed in [NR96], therefore, in our case this computation costs
at most a

O
(
d log5 d log(H(F ) + d logH(F ) + logH(B) + n0)M

(
d2 max(log(H(F ), d))

))
,

which is negligible with regards to the cost of adaptive-lll of:

O
[
d3(log ‖B‖max + n0 + log(logH(B) + d logH(F )))

(n0 + d+ log ‖B‖max + log(logH(B) + logH(F )))M(d)
]
.

�
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6.4. CM-fields and integrality of the inner product. A number field K is a
CM-field if it is a quadratic extension K�F where the base field F is totally real
but K is totally imaginary. Let us present a simple observation on the behavior of
the Archimedean embedding in this class of fields.

Lemma 6.1. Let K a CM-field. Then for any integers a, b ∈ oK,

〈a, b〉 ∈ Z.

Proof. Let a, b two integers of K. In this case 〈a, b〉 = tr(aκ(b)), where κ is the
complex conjugation of K. Since the complex conjugation acts as a Galois invo-
lution over K, and hence oK, κ(b) is an integer. Whence 〈a, b〉 is the trace of an
integral element and is thus a rational integer itself. �

Therefore when working with a CM-field K, the matrix Gγ of the inner product
in a fixed basis of an order, is in fact integral. As a subfield of a CM-field, any
totally real field shares also this property. The reduction of such orders can then
be performed directly with this matrix and not an approximation, as presented in
the second point of Theorem 5.2.

Conversely, when K is not a subfield of a CM-field, the corresponding matrix is
a priori, not integer-valued. This whole framework of Interval Arithmetic approxi-
mation is then important to correctly reduce. Up-to-our knowledge, no satisfactory
estimation of the precision required on the inner product to reduce ideals appears
in the literature. Some authors like Cohen [Coh93] or Belabas [Bel04] suggest us-
ing some arbitrary approximation and let the lll reduction operate. However in
this setting, the outputted basis has no reason to be lll-reduced. In some cases
this aspect is not an issue since the reduction was only used to shrink the size of
coefficients involved in some computations, but one can’t assert any bounds on the
norm of elements appearing in these somewhat reduced -bases.

6.5. Theoretical bounds on the precision of the representation. As already
mentioned, the precision needed for the computation of the inner product matrix is
difficult to evaluate. Using Lemma 4.1 one can derive some upper bounds depending
on the defining polynomial of the number field.

We start in the whole generality by giving a lower bound on the least eigenvalue
of a real matrix using its trace and its determinant:

Lemma 6.2 (Bound on the least eigenvalue). Let A ∈ Cd×d a complex valued
square matrix, with real positive eigenvalues 0 < λd ≤ · · · ≤ λ1, then:[

d− 1

trA

]d−1

detA ≤ λd ≤ (detA)
1
d

Proof.
Upper bound : Trivial by the positivity of eigenvalues. Notice that bounding by trA

d
is also valid by the same argument but slightly less effective by arithmetic-geometric
means inequality.

Lower bound : By arithmetic-geometric means inequality and positivity of the eigen-
values we have: (

detA

λd

) 1
d−1

≤ trA− λd
d− 1

≤ trA

d− 1
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As such,
[
d−1
trA

]d−1 detA
λd
≤ 1. �

Let now d,H two fixed positive integers. Let P (X) =
∑d
i=0 aiX

i ∈ Z[X] a
monic integral polynomial of geometric height bounded by H, that is such that
maxi|ad−i|

1
i ≤ H. Denote by ∆P its discriminant. Assuming that P is irreducible,

consider the set of its complex roots θ1, . . . , θn and construct the associated d × d
Vandermonde matrix V = V (θ1, . . . , θd). Then we have:

Lemma 6.3. Let A be the Hermitian matrix square V · V †, with strictly positive
least eigenvalue λd(A) > 0, then:[

d− 1

d

]d−1

d∆2
P

(H2 − 1)d−1

H2d2−2
≤ λd(A) ≤ ∆

1
d

P

Proof.
Upper bound : Recall that by definition of the Vandermonde determinant,

detA =

 ∏
1≤i,j

(θi − θj)

2

= ∆2
P .

Lower bound : Using Fujiwara’s bound—as stated in [Mar66]— we can assert that
every root of P has magnitude bounded by H. Using a finite geometric summation
then yields:

trA =
∑

1≤i,j≤d

|θi|2j ≤ d
H2d+2 −H
H2 − 1

.

�

By Proposition 4.1 we derive:

Corollary 6.1. The accuracy of the minimal proper representation of the Gram-
matrix representing a principal order of the number field Q[X]�P (X) in its power
basis satisfies

n0 ≤ log d− 2 log ∆P + 2(d2 − d+ o(d)) logH

The previous bound is exponential and gives little information on the typical
behavior of the accuracy of a random polynomial or number field. Experiments seem
to show that the accuracy needed is nonetheless small with regards to the degree:
only a logarithmic number of bits appear necessary to ensure the properness of
the representation. The following heuristic encompasses the numerous experiments
conducted.

Heuristic 6.1. Let P ∈ Z[X] a monic integral polynomial of height H > 1 and
degree d, taken uniformly at random that is each of the d free coefficients of P
is sampled uniformly and independently in the set {−H, . . . ,+H}. Construct V as
before, then the expected precision of the minimal representation of the Gram-matrix
V · V † under this distribution is

EP
[
n0(V · V †)

]
= θ(log n).
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6.6. Relation with the Expansion Factor. Let K be a number field of degree
d and o an order of K. Let us fix a integral basis γ = (b1, . . . , bd) of o. Define the
coefficient embedding of o relatively to γ as the injective morphism:

ιγ :

∣∣∣∣ o −→ Zn

a =
∑d
i=1 aibi 7−→ (a1, · · · , ad)T

that is the map taking the decomposition of an element of the order in the basis
γ and mapping it to the vector of corresponding coefficients. Taking the infinity
norm through the embedding ιγ makes arise the so-called (coefficient) infinity norm
‖ · ‖γ,∞, formally defined as:

‖a‖γ,∞ = ‖ιγ(a)‖max.

Definition 6.1 (Expansion Factor). Let K be a number field and o an order of K.
The expansion factor of o in basis γ ⊂ o is defined as:

δo,γ = sup
a,b∈o

‖ab‖γ,∞
‖a‖γ,∞‖b‖γ,∞

Intuitively the expansion factor gives a measurement of the obstruction— in-
duced by the ring structure of o—on the infinity norm to be sub-multiplicative,
that is satisfying ‖ab‖ = ‖a‖‖b‖ for any a, b. The following lemma relates the
canonical embedding to the expression factor through the eigenvalues of the Gram-
matrix introduced in Section 6.3.

Proposition 6.1. Let K be a number field and o an order of K of basis γ. Denote
by Gγ the Gram-matrix Gγ of γ and by λ1 (resp. λd) its greatest (resp. least)
eigenvalue. Then:

δo,γ ≤
λ1√
λd

degK

Proof. Recall above else all that ‖ · ‖ denotes the norm induced by the canonical
embedding. Remark that this norm is an algebra-norm:

‖ab‖ =
∑
σ

σ(ab)σ(ab)

=
∑
σ

σ(a)σ(b)σ(a)σ(b)

≤

(∑
σ

σ(a)σ(a)

)(∑
σ

σ(b)σ(b)

)
= ‖a‖‖b‖

Let now a, b ∈ o and A = ιγ(a), B = ιγ(b) their coefficient embedding. Then, us-
ing the characterization of the least (resp. the greatest) eigenvalue of an Hermitian
matrix S as the infimum (resp. supremum) over complex vectors of the Rayleigh
quotient XTGγX

XTX
yields the norm equivalence:

λd‖a‖2γ,∞ = λdA
TA ≤ ‖a‖2 ≤ λ1A

TA = dλ1‖a‖2γ,∞
Whence, plugging the sub-multiplicativity proved earlier directly on the product ab
yields:

λd‖ab‖2γ,∞ ≤ ‖ab‖2 ≤ ‖a‖2‖b‖2 ≤ d2λ2
1‖a‖2γ,∞‖b‖2γ,∞

�
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Informally we have seen through this paper that the hardness of performing
lattice reduction in an order o is related to the ill-conditioning of the Gram-matrix
representing the inner product of the lattice: the smallest the least eigenvalue is, the
greater the accuracy must be to represent the lattice and then the slower goes the
reduction. Similarly, Proposition 6.1 states that the ill-conditioning of the matrix
makes cryptographic constructions (in the sense of [Gen09] for instance) harder to
construct. These two—apparently unrelated—problems are actually two avatars
of the problem of finding convenient basis of orders to design fast algorithms from
reduction theory on the one hand and from arithmetic considerations on the other.

6.7. The Cyclotomic case. Cyclotomic fields are of the utmost importance in
algebraic number theory as they form a class of fields with nice and important
properties. They are indeed related to many problems—Fermat’s last theorem,
primes in arithmetic progressions to name but a few—but also being the cornerstone
of the abelian Galois theory by the Kronecker–Weber theorem (see [Was97] for
a more exhaustive reference on the applications of Cyclotomic fields to number
theory).

Furthermore, cyclotomic fields have lately become ubiquitous in the cryptograph-
ical setting since lattice-based schemes are almost always instantiated in these fields.
Indeed due to the existence of a Fast Fourier Transform, the arithmetic in their ring
of integers enjoys fast algorithms. Reduction theory in this context is then a prac-
tical mean for estimating security parameters of these cryptosystems.

Let Q(ζd) be the d-cyclotomic field, where classically ζd denotes a primitive
d-roots of unity. Its degree is then ϕ(d) and its maximal order is precisely the
equation order Z[ζd] (see [Was97] for a proof of this statement). As before, denote
by Vσ the Vandermonde matrix V

(
(ζ

(j)
d )j∈Z∗d

)
of primitive roots of unity. Remark

that the matrix V · V † is circulant of first row

C(n) = [cn(0), . . . , cn(ϕ(n)− 1)]

where

ck(n) =

n∑
l∈Z∗n

ζkln

is the k-th Ramanujan’s sum associated to d. Since V ·V † is circulant of order ϕ(n),
classically its eigenvalues are the coefficients of the Discrete Fourier Transform of
the polynomial P (X) =

∑ϕ(n)
i=0 cn(i)Xi, that is the evaluations of P over the ϕ(n)-

th roots of unity. Since a cyclotomic field is above all a CM-field, the coefficients
of Vσ are integers, asserting the integrality of Ramanujan’s sums.

6.7.1. Elementary properties of the sums. Nonetheless by a finer analysis of these
sums, one can derive closed expressions using elementary arithmetic functions,
namely Euler’s totient12 ϕ and Möbius’s function13 µ.

12This function evaluated on an integer n counts the positive integers up to n that are relatively
prime to n.

13The Möbius function is defined as the sum of the primitive n-th roots of unity.
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Lemma 6.4 (Prime power case). Let p be an odd prime and and 1 ≤ ` < p an
integer. Then we have:

cp`(k) =


ϕ(p`)

(
= p`−1(p− 1)

)
, if k = 0 mod n

−p`−1, if k = pi mod n with i 6= `

0, otherwise

Lemma 6.5 (Multiplicativity). Let a, b two coprime non-negative integers then

∀k ∈ N, cab(k) = ca(k)cb(k)

Lemma 6.6. For any non-negative integer n, we have:

∀k ∈ N, cn(k) = µ

(
n

gcd(k, n)

)
ϕ(n)

ϕ
(

n
gcd(k,n)

)
Proof. By multiplicativity and Lemma 6.4. �

Lemma 6.7 (Power-of-two and Prime Cyclotomics).
(1) Let d > 1 an integer. The least eigenvalue of the Gram-matrix of the order

Z[ζ2d ] is ϕ(n).
(2) Let p a prime. The least eigenvalue of the Gram-matrix of the order Z[ζp]

is 1

Proof.
(1) Using the characterization of Lemma 6.4, the vector C(2d) has all but its

first coordinate equal to zero. Since its first coordinate is ϕ(2d) = 2d−1 the
spectrum of the matrix V V † is reduced to {2d−1}.

(2) Using the characterization of Lemma 6.4, the vector C(p) has all but its
first coordinate equal to −1. The matrix V V † then decomposes as pId− 1
where 1 is the matrix of size p−1×p−1 of all coefficients equal to one. Since
the latter matrix verifies 12 = (p − 1)1, we can deduce that its spectrum
is {0, p − 1}, the zero eigenvalue being repeated p − 2 times. Hence, since
pId and 1 trivially commute, we conclude that the spectrum of V †V is
{1, p− 1}.

�

Theorem 6.2. Let K the d-cyclotomic field and oK its ring of integer. Let (a, 〈·, ·〉)
a rank d lattice arising from an ideal a of oK, exactly represented by the pair (G,A)
in the power-basis ζ ∈ Λϕ(d). The adaptive-lll (Algorithm 5) operates in at most

O
(
ϕ(d)3(log ‖B‖max + logϕ(d))(ϕ(d) + log ‖B‖max + logϕ(d))M(d)

)
arithmetic operations.

If d = 2n is a power of two, the above complexity collapses to:

O
(
23n log ‖B‖max(2n + log ‖B‖max)M(d)

)
arithmetic operations.

Proof. The first point is a direct application of Theorem 5.2 together with the
bound: ‖S‖max = maxi C(d)i = φ(n) easily derived from Lemma 6.6. The second
follows from the computation of the least eigenvalue in the power-of-two case of
Lemma 6.7 and dividing the matrix S by φ(n). �
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Remark that the computation of the least eigenvalue in the prime case in Lemma 6.7
asserts it is not possible to divide the matrix S to get a smaller representation with
the technique of Section 4.3.1.
Thomas: Section sur l’implem?
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