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Abstract. We present a general framework for polynomial-time lattice Gaussian sam-

pling. It revolves around a systematic study of the discrete Gaussian measure and its

samplers under extensions of lattices; we first show that given lattices Λ′ ⊂ Λ we

can sample efficiently in Λ if we know how to do so in Λ′ and the quotient Λ/Λ′,

regardless of the primitivity of Λ′. As a direct applications, we tackle the problem

of domain extension and restriction for sampling and propose a sampler tailored for

lattice filtrations, which can be seen as a broad generalization of the celebrated Klein’s

sampler.

Then, we demonstrate how to sample using a change of basis, or even switching

the ambient space, even when the target lattice is not represented as full-rank in the

ambiant space. We show how to correct the induced distortion with the “convolution-

like” technique of Peikert ([29], which we encompass as a byproduct).

Since our framework aims at modularity and leverage the combinations of smaller

samplers to build new ones, we also propose ad-hoc samplers for the so-called root

lattices An,Dn,En as base cases, extending the state-of-the-art for root lattice sampling,

which was limited to Zn.

As a by-product, we obtain novel, quasi-linear samplers for prime and smooth con-

ductor (as 2ℓ3k) cyclotomic rings, achieving essentially optimal Gaussian width. In a

practice-oriented application, we showcase the impact of our work on hash-and-sign

signatures over ntru lattices. In the best case, we can gain around 200 bytes (which

corresponds to an improvement greater than 20%) on the signature size.

Lastly, we sprinkle our exposition with several new estimates for the smoothing

parameter of lattices, stemming from our algorithmic constructions.

1. Introduction

For the last few decades, lattices have proved themselves to be a cornerstone of mod-

ern cryptography, allowing the development of feature-rich schemes, including digital
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signatures [10, 33, 15], identity-based encryption [19], functional encryption [2], (non-

interactive) zero-knowledge proofs [31] and last but not least fully homomorphic encryp-

tion [18, 6]. A common denominator of many such schemes revolves around the ability of

sampling from the so-called discrete Gaussian distribution over a given lattice Λ. Given

a center c in the ambient space ΛR and a “width” s — which is essentially the standard

deviation by analogy with the normal distribution — the distribution DΛ,c,s2 assigns the

vector v ∈ Λ the probability proportional to the Gaussian function exp(−π∥v−c∥2/s2).
Remark that this distribution only depends on the lattice and not on the basis used to

represent it. In this sense it does not leak any information about a possible secret basis:

this “zero-knowledge” property accounts for its utility in cryptography.

For specific lattices such as Zn or lattices stemming from some trapdoor sampling

as in [24], ad-hoc approaches are commonly used. In comparison, to sample in an a

priori arbitrary lattice, two polynomial time samplers are well-known and widely used

in constructions and beyond: the so-called Klein sampler (or gpv sampler) [19] and the

Peikert sampler [29], both having different advantages and drawbacks. The former is a

sequential sampler: the algorithm performs adaptive iterations of sampling in projected

lines, where the choices made in each iteration affect the values used in the next. It is

rather costly and imposes to work with the Gram-Schmidt orthogonalization of the input

basis. The latter is a naturally parallel sampler, reducing the problem of sampling in Λ

to sampling the coefficients of the desired sample on the input basis. This “change of

basis” induces a distortion, blurred by convolving with a sufficiently wide perturbation.

It is faster than Klein’s sampler at the price of slightly worse quality, in the sense that

the minimal samplable width is larger. Note that these two algorithms correspond to

the randomization of two famous polynomial time oracles for the (approximate) Closest

Vector Problem from Babai [3]: the Klein sampler corresponds to the nearest plane algo-

rithm and the Peikert sampler to the rounding algorithm. Fine-tuning such algorithms

is one of the main tasks for designers of signatures in the hash-then-sign framework of

[19, 11].

On hash-and-sign digital signatures. Designing, selecting and analyzing quantum-resistant

schemes is the main goal of the ongoing NIST standardization effort for post-quantum

cryptography. In July 2022, NIST eventually announced four post-quantum algorithms

to be standardized. For signatures, two of the three selected algorithms are lattice-based,
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falcon [33] and dilithium [10], epitomizing two known classes1 of lattice signatures:

hash-and-sign and Fiat-Shamir with aborts. Recently, Espitau et al. designed an alter-

native approach to falcon, called mitaka [15]. As an attractive advantage, mitaka

can be instantiated over arbitrary cyclotomic fields, conveniently allowing to reach all

NIST security levels. mitaka relies on a so-called hybrid sampler [32], which acts as

Klein’s sampler at the level of the ntru module and calls the Peikert sampler to sample

within this ring. For power-of-two cyclotomics, this approach is sufficient, as the sam-

pling of the ring of integers amounts to sampling in a square lattice Zn. However, for

the other cyclotomic rings considered in [15], this induces a non-negligible quality loss,

thus a slight degradation in security.

Contributions. In this work, we aim at trespassing this Klein/Peikert dichotomy for

polynomial time sampling. We showcase a general framework based on a systematic

study of the discrete Gaussian distribution under extensions: algebraic extensions through

short exact sequences and metric extensions through linear transformations. This frame-

work allows us to build new samplers over extensions or restrictions of domains where

we already know how to sample. Our abstract samplers correspond to effective versions

of general bounds on the smoothing parameter of lattices: this correspondence is an uni-

fying thread in all our exposition. To complete our modular framework, we also provide

ad-hoc samplers of essentially optimal widths for root lattices, in order to use them as

fundamental blocks to instantiate more involved samplers. As an application, we obtain

novel, optimal and efficient samplers over cyclotomic rings of prime and smooth conduc-

tors. We also study their impact on hash-and-sign type signatures. The technical details

of our contributions are as follows.

Exploiting the decomposition over short exact sequences. Given a lattice Λ and

one of its sublattices Λ′, we can associate the short exact sequence of Z-modules:

0 −→ Λ′ −→ Λ −→ Λ⧸Λ′ −→ 0.

1Recently, the scheme Hawk [12] presented a new intriguing signature paradigm tied to lattices.
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Note that in this sequence, the quotient Λ/Λ′ is not necessarily a lattice2 itself, and

as such, Λ cannot be identified as a lattice to Λ′ ⊕ Λ/Λ′. We show how to deal with

this extension of groups to extend samplers for Λ′ and Λ/Λ′ into a sampler for Λ, for

standard deviations above the smoothing parameters of the Λ′ component. In particular,

we identify precisely the projection of the Gaussian measure onto the quotient, recovering

the known situation where Λ′ is either full-rank or primitive. This construction translates

into a simple bound on the smoothing parameter, namely

η5ε(Λ) ⩽ max
(
ηε(Λ

′), ηε

(
Λ⧸Λ′

))
,

where the notion of smoothing is generalized to accommodate non-lattice quotients. Note

that the choice of the sublattice is arbitrary here. This suffices, for instance, to deal with

the problem of domain extension and restriction of samplers: given a sampler over Λ,

how can one extend it to an overlattice or restrict it to a sublattice?

A filtered sampler. A filtration of a lattice is an increasing sequence of lattices 0 ⊂
Λ1 ⊂ · · · ⊂ Λk = Λ. Iterating the previous construction gives us a generic sampler for

Λ. Namely, we have a first short exact sequence stemming from the filtration as:

0 −→ Λ1 −→ Λ −→ Λ⧸Λ1
−→ 0,

and by our sampler over sequences, we can efficiently sample in Λ if we know how to

sample in both Λ1 and Λ/Λ1. However, we can remark that quotienting by Λ1 induces a

filtration 0 ⊂ Λ2/Λ1 ⊂ · · · ⊂ Λk = Λ/Λ1. Hence, we can recursively apply this technique

and devise a sampler for Λ from samplers over (Λi+1/Λi)i. This approach yields a

natural generalization of Klein’s sampler (as presented in [19]), which corresponds to

the particular case where rk(Λi) = i for all 1 ⩽ i ⩽ rk(Λ), and the successive quotients

correspond to the Gram-Schmidt orthogonalization. Expectedly, we obtain a bound on

the smoothing parameter of Λ in terms of the smoothing parameter of these quotients,

generalizing that of [19]:

ηε(Λ) ⩽ max
1⩽i⩽k

η ε
k+1

(Λi/Λi−1).

2Generally, the quotient is a product of the torsion part, which is a finite abelian group and its free

part, which corresponds to a lattice too. Even when the quotient is torsion-free, Λ does not identify to

Λ′ ⊕ Λ/Λ′ as lattices in general.
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In a later section, we show how this abstract sampler and its designated bound can lead

to significant improvements over the Klein-Peikert dichotomy on a concrete example.

A linear sampler. Change of basis is a natural technique in linear algebra allowing to

re-express sets of linear equations in more congenial forms, by looking at the coordinates

of a linear space under a different basis. It is a deep principle undertaking numerous

aspects of numerical algorithm, whether by making incremental changes (like in Gaussian

elimination or lattice reduction), or in one take (e.g., computing the Discrete Fourier

transform representation). Unsurprisingly, we can apply it to discrete Gaussian sampling

as well3. Hence, from a high-level point of view, one can design a Gaussian sampler in a

given lattice Λ as long as one can sample discrete Gaussians in the lattice spanned by a

(fixed) congenial basis C, which can even live in a different space. This process amounts

to controlling the distortion on the Gaussian distribution induced by the change-of-basis

procedure, and to smooth it out with a carefully chosen normal4 perturbation. This

algorithm encompasses the sampler of Peikert [29], which reduces sampling in a lattice Λ

to sampling spherically in ZrkΛ — this can be done coordinate-wise. This construction

yields a natural bound on the smoothing parameter, writing a basisB of Λ as the product

TC:

ηε(Λ) ⩽ s1(T) · ηε(L(C))

for s1(T) being the largest singular value of T. Again, note that the choice of the de-

composition is arbitrary (as long as C is invertible). A generic sampler in tensor lattices

Λ1 ⊗ Λ2 follows almost immediately.

Sampling in root lattices. The previous contributions aim at building a framework

for efficient Gaussian sampling, by joining existing samplers through extensions (namely

module extension for the exact sequence sampler, linear extension for the linear sampler

and tensor extension for the tensor sampler). It means that we need to be able to sample

3Of course, change of basis works very well for continuous Gaussians: it simply amounts to matrix-

vector multiplication.
4What matters for proofs is that the perturbation distribution has good convolution properties with

Gaussian kernels.



6 THOMAS ESPITAU⋇, ALEXANDRE WALLET⋆, AND YANG YU†

in some base cases to fully instantiate these higher-order constructions. We thus intro-

duce a set of ad-hoc samplers for some of the so-called root lattices (An and their duals,

the face-centered lattices Dn, the Gosset lattice E8) emerging in many contexts. They

are, for example, well-known for their outstanding geometric properties, e.g., enjoying

quasi-linear decoding [7, 8], or their appearance in more mathematical topics such as the

classification of Lie algebras. In particular, our samplers rely on their well-understood

structures and exceptional isomorphisms between them, coming from the latter topic,

and we reach standard deviations essentially at the smoothing of these lattices.

Cyclotomic sampling, cryptographic impact. To showcase our framework in a

cryptographic context, we demonstrate how to instantiate various samplers over some

structured lattices. There are well-known identifications between certain ideals in prime

cyclotomic rings and Ap−1 lattices (or their duals), already subject to algorithmic works [21,

14]. Cyclotomic rings of smooth conductors can also identify as (direct sums of) prime

cyclotomic rings. We exploit our ad-hoc samplers to devise novel samplers in cyclo-

tomic rings: our result combines quasi-linear efficiency and optimal Gaussian width.

To our knowledge, all previous approaches reached worse Gaussian widths, and at best

equivalent efficiency.

We also detail the implication for the design of hash-and-sign signatures, where the

ability to sample efficiently and precisely is crucial for the security and bandwidth of

the scheme. We compare our variations with the recently proposed and state-of-the-art

Falcon [33] and Mitaka [15] signatures. In particular, we show how to design hash-and-

sign signatures more tightly on smooth cyclotomic fields, giving more security (around

20 bits in both classical and quantum regime) and slightly shorter signatures for free

compared to [15]. More interestingly, we show how to implement them on prime cyclo-

tomics, allowing a very tight choice of parameter selections. At a high-level, our results

are also satisfying in the sense that they not only increase the security level for prime

cyclotomics compared to [15], they also show a more regular growth and behaviour of

the ratio security-level over cyclotomic-conductors compared to [15]. These new data

are gathered in Table 3.
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Organization of the paper. After recalling some material about lattices and Gaussian

measures in Section 2, we start with the first, central piece of our framework in Sec-

tion 3: the sampling procedure over short exact sequences (Algorithm 1), and its natural

recursive extension, the filtered Sampler (Algorithm 2). In Section 4, we present our

linear Sampler ; because of space constraints, its use for tensor sampling is postponed

to Supplementary Material F. Section 5 is devoted to our samplers for (sometimes low

dimensional) root lattices. Last, in Section 6, we instantiate many of our contributions

into a hash-then-sign signature scheme with concrete parameters and analysis.

2. Algebraic and computational background

General notation. The bold capitals Z, Q and R refer respectively to the ring of integers

the field of rational and real numbers. Given a real number x, the integral roundings

floor, ceil and round to the nearest integer are denoted respectively by ⌊x⌋, ⌈x⌉, ⌊x⌉. Let
ln denote the natural logarithm. For a real-valued function f and a countable set S, we

write generically f(S) =
∑

x∈S f(x) assuming that this sum is absolutely convergent.

Vectors and matrices are understood column-wise. For A,B two matrices, we write

[A,B] for the concatenatuion of the columns from A and B. The transpose of a matrix

T is Tt and if T is non singular, its pseudo-inverse is T⋆ = (TtT)−1Tt.

2.1. Euclidean lattices. A (real) lattice Λ is a finitely generated free Z-module, en-

dowed with a Euclidean norm ∥.∥ on the real vector space ΛR := Λ⊗ZR. By definition,

there exists a finite family (b1, . . . ,bn) ∈ Λn of linearly independent elements such that

Λ =
⊕n

i=1 biZ, and we write Λ = L(B), with the matrix B = [b1, . . . ,bn]. It is called a

basis of Λ. Every basis has the same number of elements rk(Λ), called the rank of the

lattice. We let λ1(Λ) be the Euclidean norm of a shortest non-zero vector in Λ. The

volume is detΛ =
√
detBtB, for any basis B of Λ.

In this work, when dealing with lattices embedded in Rn, we only consider the stan-

dard Euclidean norm, corresponding to the canonical inner product ⟨, ⟩, but we stress

that most of our algorithms are agnostic to the choice of the norm. The dual of a lattice

Λ is the lattice Λ∨ = {x ∈ ΛR | ⟨x,v⟩ ∈ Z, ∀ v ∈ Λ}, and we always endow it with the

same norm as Λ. If Λ is a full-rank lattice of basis B, then B−t is a basis of Λ∨; if it is

not full rank, B(BtB)−1 is a basis of Λ∨.
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2.1.1. Orthogonality. For a subspace V ⊂ ΛR, let V
⊥ = {y ∈ ΛR | ⟨y,v⟩ = 0, ∀ v ∈ V }

be the orthogonal. Let πV ⊥ denote the orthogonal projection onto V ⊥ equipped with

the restriction of the norm to that space. If P is a matrix representation of πV ⊥ , we

have P2 = P and Pt = P. Given a basis B = (b1, . . . ,bn) of a lattice Λ, we denote its

Gram-Schmidt orthogonalization by B∗ = (b∗
1, . . . ,b

∗
n), where b∗

i = π(b1,...,bi−1)⊥(bi).

2.1.2. Sublattices, quotient lattices. Let (Λ, ∥·∥) be a lattice, and let Λ′ be a submodule of

Λ. Then the restriction of ∥·∥ to Λ′ endows Λ with a lattice structure. The pair (Λ′, ∥·∥)
is called a sublattice of Λ. If any bases of Λ′ extends into a basis of Λ, then Λ′ is called

primitive. In this case, the quotient Λ/Λ′ is endowed with a canonical lattice structure

by defining: ∥v + Λ′∥Λ/Λ′ = infv′∈Λ′
R
∥v − v′∥. Then, there is an isometry between

(Λ/Λ′, ∥ ·∥Λ/Λ′) and (πV ⊥(Λ), ∥ ·∥). Effectively, this means we represent quotient lattices

by computing the projection of a given basis for Λ. We write Λ = Λ′ ⊥ Λ′′ to highlight

that Λ is the orthogonal direct sum of two lattices. In this case, πV ⊥(Λ) = Λ′′ and we

have an isometry Λ ∼= Λ′ ⊕ Λ/Λ′.

Whether Λ′ is primitive or not, the quotient Λ/Λ′ always decomposes as a product of

its torsion part T (finite subgroup of torsion elements) and its torsion-free part. Torsion

elements in the quotient represent x ∈ Λ such that ax ∈ Λ′ for some a ∈ Z, that is, the

set Λ∩Λ′
R. The torsion-free part is itself a lattice: if Λ

′ is the (primitive) lattice generated

by Λ′ and a system of representative for T, it identifies to Λ/Λ′, with the quotient norm.

It is thus equivalent for Λ′ to be primitive and for Λ/Λ′ to be torsion-free. When Λ′ has

full-rank, Λ/Λ′ is just the torsion group T.

2.1.3. Effective lifting. Given a coset t+Λ′ of the quotient Λ/Λ′, we might need to find

a representative of this class in Λ. While any element could be theoretically taken, from

an algorithmic point of view, we shall take an element of norm somewhat small, so that

its coefficients remain polynomial in the input representation of the lattice. An effective

solution to do so consists in using, for instance, Babai’s rounding or Babai’s nearest plane

algorithms — a pseudo-code is given in Supplementary Material A.

2.1.4. Filtrations. A filtration of a lattice Λ is an increasing sequence of sublattices

{0} = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λk = Λ where each Λi is a primitive sublattice of Λi+1. Let

rk(Λi) = di, then 0 = d0 < d1 < d2 < · · · < dk = rk(Λ). A filtration is called complete if

di = i for all i: for example, any basis of Λ gives a complete filtration. Filtrations are
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compatible with quotienting: if (Λi)i is a filtration of Λ, then (Λi+j/Λj)i is a natural

filtration of the lattice Λ/Λi.

2.2. Discrete Gaussian distributions. Let Σ be a positive definite matrix. We define

ρΣ(x) = exp(−πxtΣ−1x) as the Gaussian kernel of covariance Σ. Equivalently, we could

call it the standard Gaussian mass for the norm induced by Σ−1. In that case, one sees

that a Gaussian function is always isotropic, i.e., its value only depends on the designated

norm of its input. When Σ = s2In, the subscript Σ is shortened in s2 and s is called the

width.

Let now Λ ⊂ Rm of rank n ⩽ m. The discrete Gaussian distribution over Λ with

center c ∈ ΛR and covariance Σ ∈ Rm×m is defined by the density

DΛ,c,Σ(x) =
ρΣ(x− c)

ρΣ(Λ− c)
, ∀x ∈ Λ.

When c = 0, we omit the script c.

2.2.1. Smoothing parameter. For a lattice Λ and real parameter ε > 0, the smoothing

parameter ηε(Λ) is the smallest s > 0 such that ρ 1
s2
(Λ∨) ⩽ 1 + ε. When the Gaussian

width s exceeds the smoothing parameter, all the lattice cosets have roughly the same

mass. We propose a slight generalization of [26] for general covariances encompassing

this claim.

Lemma 2.1. Given a lattice Λ, ε ∈ (0, 1) and Σ ≻ ηε(Λ)
2In, then, for any c ∈ ΛR,

ρΣ(c+ Λ) ∈ [1−ε
1+ε , 1] ρΣ(Λ).

The following result recalls that cosets’ mass has exponential decay from the origin.

A useful consequence is to express the Gaussian mass by mean of a sublattice and its

corresponding projection (a proof is provided in Supplementary Material C.1).

Let Λ ⊂ Rm be a lattice and x ∈ Rm. For Σ ≻ 0, let P be the orthogonal projection

onto Λ⊥
R, where orthogonality is taken with respect to the inner product x 7→ xtΣ−1x.

Then we have ρΣ(x+ Λ) ⩽ ρΣ(P (x)) · ρΣ(Λ). If moreover Λ is primitive in Λ′, we have

ρΣ(Λ
′) ⩽ ρΣ(Λ)ρΣ(P (Λ

′)). The equality case occurs when Λ′ = Λ ⊥ P (Λ′).

2.3. Root lattices. So-called root lattices are families of special lattices with nice ge-

ometry deriving from root systems. They enjoy, for instance, good decoding properties

(see [7, 8], or more recently and closely related to this work, see [14, 34]). Most of their
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fundamental quantities are well-understood, and general exposition can be found in [23,

Chapter 4] or [9]. We only recall here the definitions of three types of root lattices (An,En

and Dn), and highlight some properties of the An family.

Definition 2.1 (Root lattices). For integer n > 0, the root lattices An,Dn,En of rank n

are respectively defined as

An = {v ∈ Zn+1 | v1 + · · ·+ vn+1 = 0},

Dn = {v ∈ Zn | v1 + · · ·+ vn ∈ 2Z},

En =

{
v ∈ Zn ∪

(
Z+

1

2

)n

| v1 + · · ·+ vn ∈ 2Z

}
.

We will particularly focus on An lattices and their dual. If (ei)i⩽n+1 denotes the

canonical basis of Rn+1, they are generated by (ei−ei+1)1⩽i⩽n and span the hyperplane

1⊥, where 1 = (1, . . . , 1). Their volume is
√
n+ 1, and λ1(An) =

√
2. Their dual are

A∨
n = π1⊥(Zn+1), with λ1(A

∨
n) =

√
n/(n+ 1), and An has index n+1 in A∨

n . Noticeably,

A2 identifies with the famous hexagonal lattice.

2.4. On cyclotomic rings. In the final Section 6, we need some background on cyclo-

tomic rings and their geometry. Most of the material used is relatively standard, but

some other aspects might be less known. For completeness purposes, we have put these

recalls in Supplementary Material B as it is not our primary focus.

3. Discrete Gaussians and short exact sequences

3.1. The short exact sequence sampler.

3.1.1. Split of the mass over short exact sequences. In this section, we generically study

the behavior of discrete Gaussians within general short exact sequences. For a given

lattice Λ, we work with the following exact sequence of Z-modules:

(1) 0 −→ Λ′ −→ Λ −→ Λ⧸Λ′ −→ 0,

meaning that the kernel of each arrow is exactly the image of the arrow preceding it.

It implies in particular that the map Λ′ → Λ is an injection ( i.e., Λ′ identifies to a

submodule of Λ) and that the map Λ→ Λ/Λ′ is surjective. We do not assume that Λ,Λ′



ON GAUSSIAN SAMPLING, SMOOTHING PARAMETER AND APPLICATION TO SIGNATURES 11

have the same rank, nor that we have an exact sequence of lattices, nor that it splits

(which would mean that Λ ∼= Λ′ × Λ/Λ′ as Z-modules).

Recall from Section 2 that Λ/Λ′ decomposes as the direct sum T ⊕ Λ′
f of its torsion

part T and its free part. The free part can be seen as Λ/Λ′, where Λ′ is the lattice

spanned by Λ′ and a set of representative of T. This denser lattice can be understood

as a “primitivation” of Λ′. We detail an example in Supplementary Material A.

For the sake of notational simplicity, we now focus on centered discrete Gaussian

distribution and omit the parameter s in the following discussion. Over this sequence,

such a distribution D = ρ/ρ(Λ) over Λ decomposes into two components measures, which

can then be normalized to probability distributions:

• the restriction: over the sublattice Λ′, which identifies as D′ = ρ/ρ(Λ′).

• the pushforward: π⋆D onto the quotient Λ/Λ′. By definition, for any witness

x of a Λ′-coset in Λ, we have π⋆D(x) = D(x+ Λ′).

Understanding the latter is the focus of the next lemma. Recall that Λ′ is primitive,

so that Λ/Λ′ identifies to the lattice π(Λ′
R)⊥(Λ). The important catch here is about

which orthogonality we are considering: in our proof, the orthogonality must be with

respect to the norm induced by the covariance matrix of the target Gaussian, that is,

x 7→ xtΣ−1x. This allows us to use that x,y ∈ ΛR such that xtΣ−1y = 0, we have

ρΣ(x+ y) = ρΣ(x) · ρΣ(y). We shall however abuse notation and use π indifferently for

the quotient map or for the orthogonal projection, as this will cause no harm.

Lemma 3.1. Let Λ′ ⊂ Λ be lattices and T the torsion part of Λ/Λ′. If Σ ≻ ηε(Λ
′) and

D = DΛ,c,Σ, then the pushforward distribution proportional to π⋆D is at total variational

distance ε
1−ε of the distribution defined by |T|−1 ·Dπ(Λ),π(c),Σ, where |T| is the cardinality

of T.

For the sake of notational clarity, we also omit the parameter Σ in the proof, and

restrict to the case of centered distributions (but the proof readily adapts).

Proof. Let T = {t + Λ′}t be a system of representative of the torsion points, i.e., for

any x ∈ Λ, there is a unique t such that x mod Λ′ = π(x) + t. By definition and

orthogonality, the pushforward of the discrete Gaussian acts as

(2) D(π−1(x mod Λ′)) = ρ(t+ Λ′)D(π(x)).
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Therefore the total measure of the quotient Λ/Λ′ can be written

(3) D
(
π−1

(Λ⧸Λ′
))

=
∑

(t,π(x))

ρ(t+ Λ′)D(π(x)) = D(π(Λ)) ·
∑
t

ρ(t+ Λ′).

Since Λ′ is the disjoint union of the t + Λ′, so we have ρ(Λ′) =
∑

t ρ(t + Λ′). By

assumption on Σ and Lemma 2.1, we get ρ(t + Λ′) ∈ [1−ε
1+ε , 1] · ρ(Λ

′) for all t + Λ′ ∈ T,

which implies ρ(Λ′) ∈
[
1−ε
1+ε , 1

]
· |T|ρ(Λ′). Now we normalize the pushforward measure

by combining the Identities (2) and (3) to obtain

(4)
π⋆D(x mod Λ′)

π⋆D(Λ/Λ′)
∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
· 1

|T|
· ρ(π(x))
ρ(π(Λ))

.

■

Lemma 3.1 satisfyingly recovers the extreme cases which are frequently encountered

in the literature. On the one hand, if Λ′ is full-rank, we have |T| = [Λ : Λ′] and

the projection sends all points to 0, so that π⋆D is statistically close to the uniform

distribution over the finite group of Λ′-cosets. On the other hand, if Λ′ is primitive, the

quotient is torsion-free, and we recover that π⋆D is essentially the orthogonal projection

of the discrete distribution, that is, a discrete Gaussian distribution over π(Λ).

An interesting subcase happens when an orthogonal decomposition Λ = Λ′ ⊥ Λ′′ is

known. We then have a short exact sequence 0→ Λ′ → Λ→ Λ′′ → 0, but the Gaussian

measure splits perfectly so that the pushforward is exactly the projected distribution.

Lemma 3.2. Let Λ′,Λ′′ be two lattices, Λ = Λ′ ⊥ Λ′′, and π the orthogonal projection

onto Λ′
R
⊥. If D = DΛ,t,s2 , then we have π⋆D = DΛ′′,π(t),s2.

Proof. The assumptions give π(Λ) = Λ′′. Decompose z ∈ Λ as z = z′+π(z) and similarly

t = t′+π(t). We use orthogonality twice: on the one hand, it gives ρs2(π(z)− t+Λ′) =

ρs2(π(z) − π(t))ρs2(Λ
′ − t′). On the other hand, it also gives ρs2(Λ − t) = ρs2(Λ

′ −
t′)ρs2(Λ

′′ − π(t)). Taking ratios gives the result. ■

3.1.2. Smoothing parameter splits over short sequences. The decomposition induced by

the quotient translates into a generic bound on the smoothing parameter:

[Modularity of smoothing parameter] Let Λ be a lattice and 0 < ε <
√
17− 4, then

η3ε(Λ) ⩽ min
Λ′⊂Λ

max
(
ηε(Λ

′), ηε

(
Λ⧸Λ′

))
.
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where ηε(Λ/Λ′) is set by convention to 0 if the quotient is of torsion, and where the

minimum ranges over all possible sublattices of Λ.

The proof is detailed in Supplementary Material D.1. The intuition behind the —

apparently arbitrary — choice of 0 for the torsion part stems from the following. Above

the smoothing of the sublattice Λ′, the distribution over the quotient is already (almost-

)uniform. Hence, if we interpret the smoothing parameter to be the minimal width to

smooth out the lattice structure (i.e., have a pushforward over ΛR/Λ which is uniform),

there is no additional condition. Indeed, scalar extension by R over the sequence (1)

yields:

0 −→ Λ′
R −→ ΛR −→ Λ⧸Λ′ ⊗Z R −→ 0.

Decompose now Λ/Λ′ ∼= T ⊕ Zr−r′ into its torsion and free part, where r = rkΛ resp.

r′ = rkΛ′. As T is a finite abelian group, we have T⊗Z R = {0}, and thus we have (as

abelian groups) Λ/Λ′ ⊗Z R ∼= (T⊗Z R)⊕Rr−r′ ∼= Rr−r′ . In other words, the extension

of scalar makes the torsion vanish so that it corresponds to the space spanned by Λ/Λ′,

the torsion-free part of Λ/Λ′. As such, the pushforward measure is driven only by Λ′

and the torsion-free part of the quotient.

3.1.3. Towards a Gaussian sampler. The bound of Section 3.1.2 can be turned into a

natural sampler built from given samplers over Λ/Λ′ and Λ′, or oracles for them. First

sample in the quotient with the appropriate distribution (or an approximation of this

distribution), lift the result to the full lattice, and sample around this point in the

sublattice Λ′. Remark that all x ∈ Λ write uniquely as x = x′ + π(x) with x′ ∈ Λ′ and

x′ = t+x′ uniquely too, since it also belongs to a unique coset t+Λ′ with t ∈ T. Above

the smoothing of Λ′, the pushforward selects such a coset and π(x) with essentially the

correct distribution. Similarly, above the smoothing of π(Λ) we cannot really distinguish

in which coset of π(Λ) a Gaussian around π(x) belongs.5 All-in-all, this strategy leads to

Algorithm 1, where we even allow sampling approximatively in the sets Λ′ and Λ/Λ′—this

will be proved usefull to recursively chain calls of this sampler, as we do in Section 3.3.

5Equivalently, it could fall into any of them.
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Algorithm 1: Short exact sequence sampler

Input:

• A sublattice Λ′ ⊂ Λ, a centre t

• an oracle O′ for DΛ′,∗,Σ

• an oracle Oq over Λ⧸Λ′, 1+δ
1−δ -close to the pushforward of DΛ,⋆,Σ

Output: v ∈ Λ following distribution statistically close to DΛ,t,Σ

1 if Λ = {0} then return 0

2 Compute π : ΛR → ΛR⧸Λ′
R
, the orthogonal projection onto Λ′⊥

R for the norm

induced by Σ−1

3 q← Oq

(
Λ⧸Λ′, π(t),Σ

)
; uq ← Lift(q,Λ)

4 u′ ← O′(Λ′, (Id− π)(t− uq),Σ)

5 return uq + u′

[Correctness of the short exact sampler] When Σ ≻ ηε(Λ
′), Algorithm 1 is correct.

Moreover, let D be the distribution of its output. For ε < 1
2 , we have

sup
v∈Λ

∣∣∣∣ D(v)

DΛ,t,Σ(v)
− 1

∣∣∣∣ ⩽ 6(δ + ε).

In particular, D is within statistical distance 3(δ + ε) of DΛ,t,Σ.

The proof relies on Lemma 3.1 and the examination of the samples. Two smoothing

arguments over Λ′ are used: once to apply Lemma 3.1, and once to switch cosets “at the

cost of some ε”. The details are given in Supplementary Material D.1.

We now present two applications of this abstract sampler: domain extensions and

restrictions, and a broad generalization of the so-called Klein’s sampler [19].

3.2. Application I: full rank domain extension and restriction.

3.2.1. Extension to an overlattice. Let Λ′ be a full-rank sublattice of Λ, so that the

quotient Λ/Λ′ is of torsion (i.e. the free part of this quotient is reduced to {0}) and

suppose that we have access to an oracle O for DΛ′,⋆,Σ for a parameter Σ ≻ ηε(Λ
′).

By Lemma 3.1, the pushforward π⋆(DΛ,⋆,Σ) is at distance at most ε
1−ε of the uniform
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distribution over Λ/Λ′. Hence specializing Algorithm 1 with O′ and a uniform sampler

for Oq yields the following:

Corollary 3.1 (Domain extension). Let ε > 0 and Λ be a lattice , Λ′ one of its sublattices

of finite index. For any oracle O′ realizing a discrete Gaussian sampling in Λ with

covariance Σ ≻ ηε(Λ
′), there exists an algorithm sampling at distance at most 6ε of

DΛ,⋆,Σ using at most one oracle call to O′.

In a nutshell, the ability to sample in Λ′ and from a pushfoward distribution over

Λ/Λ′ close to uniform enable to reconstruct samples in Λ: we do a domain extension of

the discrete Gaussian over Λ′ to the overlattice Λ. We point out the possible connection

with the averaging recombination technique used in [1], where a domain extension from

2Λ to Λ is perfomed (using exponentially many vectors).

3.2.2. Restriction to a sublattice. Conversely, it is easy to sample in a sublattice Λ′ when

we already know how to sample in Λ, and Λ′ has finite index [Λ : Λ′]: sample in Λ and

reject all samples not landing in Λ′. The number of tries is of course driven by [Λ : Λ′],

which can be proven when sampling above the smoothing of Λ′. In fact, it makes it a

specific case of the rejection sampling technique, with trivial rejection probabilities. In

the upcoming Section 5, we showcase some practical examples with root lattices.

Proposition 3.1 (Domain restriction). Let ε > 0 and Λ be a lattice and Λ′ one of its

sublattices of finite index. For any oracle O realizing a discrete Gaussian sampling in Λ

with covariance Σ ≻ ηε(Λ
′), there exists a Gaussian sampler (for the same covariance)

in Λ′ using on expectation [Λ : Λ′] calls to O.

Proof. The procedure is as follows: get a sample x from O and return it if x ∈ Λ′, other-

wise restart. The probability of x ∈ Λ′ is exactly p′ = ρΣ(Λ
′)/ρΣ(Λ) by definition of O.

As such the expected number of repetition before a success is (as the expectation of a

geometric distribution) 1
p′ . Since Σ ≻ ηε(Λ

′), Lemma 3.1 implies that p′ ∈ 1
[Λ:Λ′] [1,

1+ε
1−ε ],

bounding 1/p′ by [Λ : Λ′]. The correctness of the process follows from conditional prob-

abilities. ■

3.3. Application II: the filtered sampler. We now show that our short exact se-

quence sampler naturally extends to filtrations and allows to retrieve and generalize

samplers appearing in cryptography, such as those in [15, 19, 32]. For example, in the
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most natural case where one would sample “coordinate-by-coordinate”, our algorithm

recovers Klein’s sampler. More generally it gives a family of new samplers for a given

lattice, depending on how one decides to sort and “cut in subspaces” its input basis,

offering larger freedom in the design of sampling algorithms 6.

Remark. In the same way that Klein sampler is a randomized version of Babai nearest

plane algorithm, our technique can be interpreted as a randomized version of the nearest-

colattice algorithm of Espitau and Kirchner [16].

3.3.1. Smoothing parameter bound over a filtration. We first highlight a new smoothing

parameter bound deduced from a given filtration

{0} = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ

of a lattice Λ. It relies on repeatedly applying the splits of the smoothing parameter over

a short sequence (Section 3.1.2) along this filtration. Starting from the penultimate term

Λk−1, we bound (ignoring here the exact values of ε to ease the exposition) the smoothing

parameter of Λ by max(η(Λk−1), η(Λ/Λk−1)). Applying Section 3.1.2 to Λk−1, we also

have η(Λk−1) ⩽ max(η(Λk−1/Λk−2), η(Λk−2)). We go down the filtration inductively

until we reach Λ1. All in all, the smoothing parameter is dominated by the biggest term

appearing in the splitting. Keeping track of the growth of the ε and optimizing gives:

Let k ⩾ 1 be an integer, Λ a lattice and ε ⩽ e−k/2/
√
2. We have

ηε(Λ) ⩽ min
(Λi)i

max
i
η ε

k+1

(
Λi⧸Λi−1

)
,

where the minimum is taken over all possible filtrations of length k of Λ.

The proof is provided in Supplementary Material D.2. Note that the term k + 1 is

quite arbitrary and we can choose any real k′ ⩾ k instead, as long as the condition on

ε is updated conjointly. The idea behind the bound above allows to mildly relax the

smoothness condition over lattice cosets: instead of the whole lattice, it is only needed

to smooth the “worst” successive quotient deduced from the filtration for the cosets of

the whole lattice to have essentially the same mass.

6We will explicitly exploit these additional degrees of liberties Section 5.
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For example, it was shown7 in [19], and subsequently used at the core of several

practical constructions, that for any rank n lattice Λ,

ηε(Λ) ⩽ min
(b1,...,bn)
basis of Λ

max
1⩽i⩽n

η ε
n
(Zb̃i).

This bound corresponds to restricting Section 3.3.1 to complete filtrations of length n,

i.e. the filtration stemming from the bi’s as Λi = L(b1, . . . ,bi). Indeed, we have that

for any 0 ⩽ i < n, Λi+1/Λi is isometric to Zb∗
i , with b∗

i being the corresponding Gram-

Schmidt vector of the basis, (see also Section 2.1.2). While it could seems more likely

that such a fine-grained filtration would give in general better smoothing bounds, we

actually show that there are practical cryptographic cases where one can improve the

situation by carefully selecting a different and a priori coarser-grained filtration.

3.3.2. The filtered sampler. Following our motto — smoothing bounds and sampling are

built on the same underlying principles — we can transform Section 3.3.1 into a Gauss-

ian sampler. In essence, the process corresponds to k successive calls of Algorithm 1,

recursively progressing along the filtration.

Assume that we are given approximate oracles to sample discrete Gaussians in the

sequence of lattices (Λi+1/Λi)i, and a deterministic lift (e.g. of Algorithm 5) The first

call considers the short exact sequence

0→ Λ1 → Λ→ Λ⧸Λ1
→ 0.

Algorithm 1 requires a pushforward oracle on Λ/Λ1, so since we do not have a priori

an explicit access to it, we instantiate it as a recursive call over the quotient filtration

{0} = Λ1⧸Λ1
⊂ Λ2⧸Λ1

⊂ · · · ⊂ Λ⧸Λ1
. Hence the callee now deals with the sequence

0 → Λ2/Λ1 → Λ/Λ1 → Λ/Λ2 → 0. This is done until we reach the trivial sequence.

Then, the algorithm climbs its way back in the recursion tree, providing samples in the

lattices Λi+1/Λi.

7In its usual form for a fixed basis, the bound is ηε(Λ) ⩽ max1⩽i⩽n ∥b̃i∥ · ηε(Zn).
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Algorithm 2: Filtered sampler

Input: A filtration {0} ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ, a parameter

Σ > max0⩽i<k ηε

(
Λi+1⧸Λi

)
and a center t ∈ Λ⊗R.

Output: v ∈ Λ following distribution statistically close to DΛ,t,Σ

1 if Λ = {0} then return 0

2 Compute π : Λ→ Λ⧸Λ1

3 z← FilteredSampler
((

Λi⧸Λ1

)
i
, π(t),Σ

)
4 u← Lift(z, V1)

5 u′ ← DΛ1,(Id−π)(t−u),Σ

6 return u+ u′

[Correctness of the filtered sampler] Algorithm 2 is correct. Moreover, let D be the

distribution of its output. For small enough ε, we have

sup
v∈Λ

∣∣∣∣ D(v)

DΛ,t,Σ(v)
− 1

∣∣∣∣ ⩽ (2k + 1)ε.

In particular, D is within statistical distance (k + 1)ε of DΛ,t,Σ.

Proof. It suffices to proceed by induction along the filtration repeatedly calling Algo-

rithm 2. The detailed proof can be found in Supplementary Material D.2. ■

3.4. Recovering some known samplers. The filtered sampler readily recovers some

well-known samplers.

3.4.1. Klein’s/GPV sampler. As we saw, this sampler corresponds to taking the full

filtration associated to a lattice basis (b1, . . . ,bn) giving a lower bound on the width in

maxi ηε(Λi+1/Λi) = maxi ηε

(
b̃iZ

)
= ηε(Z) ·maxi(∥b̃i∥).

3.4.2. Klein’s sampler over a ring. This sampler works at the ring level of a module over

some ring of integer OK in a number fieldK (for example on ntru lattices which are rank

two module over a cyclotomic ring). More precisely given a module basis (m1, . . . ,md)
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over OK, we make use of the full filtration8 Λ1 = m1OK ⊂ Λ2 = m1OK ⊕m2OK ⊂ · · · .
Each recursive call thus consists in calling the oracles over the quotients Λi+1/Λi. When

instantiating this oracle with subsequently described Algorithm 3 (or Peikert’s [29] for

instance), it retrieves the so-called hybrid sampler used in [15].

3.4.3. Fast Fourier Orthogonalization sampler. Introduced in [13, 33], this sampler reaches

the same quality as Klein’s sampler but run in quasi-linear time in the dimension, by

exploiting the structure of tower of subfields in power-of-two cyclotomic fields. It is re-

trieved as the filtered sampler where the oracle over the ring is the sampler itself, called

recursively. More precisely given a basis m1,m2 of a module Λ over the ring of integers

OK of the cyclotomic field of conductor 2k, we have the short exact sequence:

0 −→m1OK −→ Λ −→ Λ⧸m1OK
−→ 0

where once again the submodule m1OK shall be understood as a sublattice through the

canonical embedding map. Now remark that an oracle call is made on the modules of

rank 1 m1OK and Λ/m1OK. However, these modules are also modules of rank 2 over the

cyclotomic field of conductor 2k−1. As such, for each of them we can reapply the same

technique recursively, requiring samples in modules of rank 2 over smaller and smaller

fields, until we eventually reach Q, where we know how to sample.

4. The linear sampler

4.1. Smoothing parameters and linear transformations. The algorithms presented

in Section 3 sample without leaving the ambient space of the lattice. However, in certain

cases, it is of interest to transfer the problem to another space — where the local geome-

try eases the sampling process — and transfer the result back to the original lattice. In a

sense, as all lattices can be seen as a transformation of the integer lattice Zn, and as most

practical Gaussian samplers rely on the ability of sampling integral Gaussians, this ob-

servation is already implicit in previous works. As expected, such back and forth between

different spaces will generate bias because of the distortion incurred by the underlying

linear transformation. To enforce the correctness of the output distribution, it must

8We make a slight abuse of notations here by silently identifying a submodule with the corresponding

sublattice of the lattice attached to the module. To be perfectly formal, we shall understand the elements

of the filtration as viewed under the canonical embedding map recalled in Supplementary Material B.1.
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be corrected. For example, the filtered sampler of Section 3.3.2 iteratively corrects the

transformation to the space attached to the filtration, acting “subspace-by-subspace”.

A global approach to the problem consists in considering any lattice as a linear trans-

formation of another lattice, but not always Zn. This gives the following bound on the

smoothing parameter, which can be useful when few quantitative informations about Λ

are known.

Lemma 4.1. Let Λ be a lattice of rank n in Rm, then ηε(Λ) ⩽ inf s1(T) · ηε(L(C)),

where the infimum is taken over all pair (T,C) such that Λ = L(TC) and C ∈ Rn is

invertible.

Proof. Let T,C be any such decomposition of a given basis B of Λ. The basis of the

dual lattice Λ∨ is then B∨ = B(BtB)−1, and as such for any vector z ∈ Rm we have

(B∨z)t(B∨z) = zt(BtB)−1z = (C−tz)t(TtT)−1(C−tz). This implies that for any s > 0,

we have ρ 1
s2
(Λ∨) = ρTtT

s2
(L(C)∨). Asking s ⩾ ηε(Λ) is thus equivalent to asking that

s2(TtT)−1 ≻ ηε(L(C))2 · In, as stated. ■

4.2. Sampling by linear transformation. While the previous section dealt with local

corrections for Gaussian sampling, we are now interested in a global approach to Gaussian

sampling. Following as always our motto that a bound on the smoothing parameter

corresponds to a sampling algorithm, we consider a lattice L(B) as a transformation T

of some initial lattice L(C). Our approach follows and generalizes the proposition of

Peikert [29], where L(C) = Zn, and we now give an informal description.

As explained, on a high level the transformation of a fixed lattice distorts the geometry

in the initial space and consequently any ellipsoid in that space. The bias can be corrected

to any target ellipsoidal shape by adding a large enough perturbation, and up to rescaling:

this rescaling corresponds to the fact that “there must be enough available space in our

target ellipsoid” so that we can “inflate” the starting one into it by adding perturbations.

Going formal, one can prove the correctness of the approach thanks to the nice properties

of Gaussian distributions, and the scaling factor appears implicitly as a condition of

positive-definiteness involving the smoothing parameter of the initial lattice.
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Algorithm 3: Linear sampler

Input:

• Two matrices T ∈ Rm×n,C ∈ Rn×n with m ⩾ n and C invertible such that

TC = B is a basis of a lattice Λ;

• a center t ∈ Λ⊗R;

• a parameter r ⩾ 0 and a positive definite matrix ∆ ∈ Rm×m such that

Σ := (Tt∆−1T)−1 ≻ r2In;

Output: y ∈ Λ with distribution statistically close to DΛ,t,∆.

1 Σp ← Σ− r2I
2 p← NΣp

3 x← DL(C),T⋆t+p,r2 /* T⋆ is the pseudo-inverse */

4 ; return y := Tx

[Correctness of the linear sampler] Let r ⩾ ηε(Λ(C)). If sn(∆) > r2 · s1(T)2, then

Algorithm 3 is correct. Moreover, let D be the distribution of its output. For ε < 1/2,

we have

sup
v∈Λ

∣∣∣∣ D(v)

DΛ,t,∆(v)
− 1

∣∣∣∣ ⩽ 4ε.

In particular, D is within statistical distance 2ε of DΛ,t,∆.

Remark. This sampler also relies on a continuous Gaussian sampler, but fundamen-

tally, the required property is that the product of the density functions of the perturbation

and the lattice sampler can be understood: this is the core fact used to ensure the cor-

rectness of the output.

The proof is very similar in spirit of [15, 29], and amounts to a marginal distribution

calculation combined with the nice properties of Gaussian functions with respect to

multiplication (see e.g. [29, Fact 2.1]). It is therefore in Supplementary Material E. The

main technical difference in the proof is that the considered lattices may not be full-rank

in their ambient space. This is dealt with properties of the pseudo-inverse: T⋆T = In

and TT⋆ is the orthogonal projection onto Λ⊗R. With the notation of Algorithm 3, this

allows to write ρΣ(x−T⋆t) = ρ∆(y−t) and to proceed. We note that ifm = n, then T is

invertible and the algorithm is correct as soon as ∆ ≻ r2TTt. Second, if a decomposition
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∆ = LtL is known, then a sufficient condition for correctness is sn(L) > r · s1(T): this

recovers the results of [29, 15].

4.3. Example of elementary instantiations. This abstract framework allows to eas-

ily recover known samplers and extend them in few directions. We already highlighted

that using C = In and full-rank lattices retrieves Peikert’s sampler [29].

• SVD based sampler:: The singular value decomposition gives B = X∆Yt with

X,Y orthogonal matrices and ∆ diagonal. It amounts to a diagonalisation of

the Gram matrix BtB, or in other words to work in a basis of eigenvectors.

As X and Y are orthogonal, the sampler reaches standard deviations starting

s1(B) · ηε(Zn), and gives a quality equivalent to the one of Peikert.

• QR-based sampler:: Using the QR decomposition B = QR, one can use e.g. the

above procedure to sample in L(R) with coordinate domain Zd, and then obtains

a discrete Gaussian in L(B). Since Q is orthogonal, the sampler reaches standard

deviations starting s1(R) · ηε(Zn) = s1(B) · ηε(Zn). Alternatively, as s1(Q) = 1,

if one knows how to sample in L(R) then the linear sampler can reach standard

deviations greater than ηε(L(R)).

• Gram-Schmidt based sampler: Let B = B̃U be the Gram-Schmidt decomposition

of B. In particular, U is upper triangular with 1’s on its diagonal, and therefore

its own Gram-Schmidt orthogonalization corresponds to the identity matrix. By

Section 3.3.1, we thus have ηε(L(U)) ⩽ ηε/(n+1)(Z). Using the standard bound

ηε(Z) ⩽
√

ln(2(1 + 1/ε)/π, the sampler with that decomposition reaches stan-

dard deviations very close to s1(B̃) · ηε(Zn).

• Hybrid sampler:: More generally, one can decompose the ambient space of Λ in

orthogonal subspaces, use a sampler in each subspaces and obtain a discrete

Gaussian in Λ by multiplying by a block-orthogonal matrix. This approach is

similar to the hybrid sampler of [15, 32], when decomposing the ntru lattice.

4.4. Application: sampling in tensor lattices. A lattice L(A)⊗L(B) is generated

by the matrix A ⊗ B which can be rewritten in as a matrix product involving A and

B. Therefore Algorithm 3 instantiates very well over such lattices. This gives (up to

our knowledge) a novel way to sample in L(A)⊗L(B), and a corresponding smoothing
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parameter bound. The details are moved to Supplementary Material F because of space

constraints.

5. Sampling in root lattices

This section collects various approach to efficiently sample Gaussian in root lattices

An, Dn and E8. On the one hand, some of them will appear to be important building

blocks for sampling cyclotomic integers and can be seen as base cases or elementary

functions to construct samplers on arbitrary lattices by combination (in the same way

Klein’s and Peikert’s samplers are build around one dimensional samplers). On the other

hand, they are also a good way to illustrate practical usecases of our generic samplers

from the previous sections.

Our ad-hoc samplers in particular rely on exceptional orthogonal decompositions in-

volving such lattices, and their close relationship in general; all the background material

for this section is described in [23, Chapter 4].

5.1. Sampling in low dimensional root lattices. We start with samplers for the

root lattices of small dimension, as well as the Dn family. They are based on the abil-

ity to juggle between restrictions and extensions of lattices using Proposition 3.1 and

Corollary 3.1, and exceptional isometries between them [23, Chap. 4.6].

Theorem 5.1. We can sample efficiently and at standard deviation right above the

smoothing parameter in the following exceptional lattices:

• Dn, A
∨
n for all n > 1;

• A2,A3,A4,A5,A6,A8;

• E6,E7,E8.

Below, we only give the high-level ideas of the samplers used in Section 6. All remain-

ing proofs and details9 can be found in Supplementary Material G.

Dn samplers: The Dn lattice can be described as the vectors of Zn which coordinates in

the canonical basis (ei)i⩽n sum to an even number, so that [Zn : Dn] = 2. This congenial

9One can also sample in An = Zn+1 ∩ 1⊥, checking when the sum of coordinates vanishes. This is

clearly inefficient when n grows. In the next section we propose a far more efficient algorithm, when

n ⩾ 9.
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definition leads to a domain extension approach form as in Proposition 3.1: a sample

either belongs to Dn or either to its non-zero coset (with almost equiprobability above

ηε(Dn)).

A∨
n samplers: By definition, A∨

n is π1⊥(Zn+1), where 1 = (1, . . . , 1), and thus directly

falls into the framework of Section 3: sample in Zn+1 and compute the projection of the

sample. For a vector z = (z1, . . . , zn+1), we have π1⊥(z) = (zi − 1
n+1

∑
j zj)i⩽n+1. Note

that this does not incur any smoothing condition for correctness (although the standard

deviation parameter should be large enough to make the statistical property of the sam-

ple “Gaussian-like”).

A2 sampler: From above, we can sample easily in A∨
2 . The additional ingredient is

that any rank 2 lattice is similar to its dual (see e.g. [23]). Here, the similarity given by

A2 =
√
3R−π/2(A

∨
2 ), where R−π/2 is the rotation by −π/2 of the hyperplane 1⊥ around

the origin. These observations lead to Algorithm 9 (detailed in Supplementary Mate-

rial G).

E8 sampler: the E8 lattice is an unimodular lattice in R8 so in particular its de-

terminant is 1. It is not, however, isometric to Z8. We have the exact sequence

0 → D8 → E8 → Z⧸2Z → 0 by the covering of cosets E8 = D8 ∪ (1/2, . . . , 1/2) + D8.

Combining our Dn sampler with Algorithm 1 gives Algorithm 10 to sample in E8: flip a

coin to decide the coset, sample a Gaussian in D8, output the sum.

A8 sampler: from [23, Theorem 4.6.7 and 4.6.12], A8 is isometric to a lattice of index

3 in E8. Combining the E8 sampler and Proposition 3.1 in the natural way gives Algo-

rithm 11.

We claim that all our approaches reach very close to the smoothing parameter of these

lattices, and we now give estimates for the one we need in later sections. The main

ingredient here is the identification of the Gaussian mass with the theta series of a

lattice:

ρ1/s2(Λ
∨) = 1 + κ(Λ∨) · exp(−πs2)λ1(Λ∨)2 + κ2 exp(−πs2)n

2
2 + · · ·

= θΛ∨(exp(−πs2)),(5)
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where we have sorted the vectors of Λ∨ by their increasing squared norm, and κ(Λ∨)

is the kissing number of Λ∨. Let now q = exp(−πs2), then determining the smoothing

parameter of a lattice amounts to find q such that θΛ∨(q) − 1 = ε. This can always be

done by series reversion: there exists a series S such that S(θΛ∨(q) − 1) = q. Routine

calculations then show

s =

√
ln(−S(ε))

π
.

Note that this is an exact expression, but that working out some terms of S requires to

know those of θΛ∨ . Thankfully, for all exceptional lattices, the first terms of the theta

series are well-known, and we obtain the next lemma (details are given in Supplementary

Material G).

We have the following estimates for ε > 0:

• ηε(Zn) =
√

1
π (ln(

2n
ε ) + o(1/ε));

• for n ⩾ 5, ηε(Z
n) ⩽ ηε(Dn) =

√
1
π (ln(

2n
ε ) + o(1/ε)) ≈ ηε(Zn);

• ηε(An) =
√

n+1
n ·

√
1
π (ln(

2(n+1)
ε ) + o(1/ε)) ≈ λ1(A∨

n)
−1 · ηε(Zn);

• ηε(A∨
n) =

1√
2
·
√

1
π (ln(

n(n+1)
ε ) + o(1/ε)) ≈ λ1(An)

−1 · η2ε/(n+1)(Z
n)

The second result can be understood intuitively as follows: D∨
n is the disjoint union of

Zn and Zn+ 1
21. It tells us that Dn and Zn have almost equivalent smoothing, as the first

term in the theta series of their duals are the same. On the other hand, λ∞1 (D∨
n) =

1
2 ,

so that the usual bound10 obtained from the shortest vector of the dual in the ℓ∞ norm

would give an overestimate by a factor ≈ 2.

5.2. Sampling in An lattices. We now study the Gaussian sampling problem for arbi-

trary An lattices. The generic case is trickier, as there is no known direct isomorphisms

or decompositions involving other exceptional lattices. A possible approach consists in

instanciating our framework of Section 3.3.2 and Section 4.2 using the base cases we

just constructed. As a point of comparison, we first briefly give the results given by the

generic use of standard Klein and Peikert samplers.

10From e.g. [28, Lemma 3.5], we have ηε(Λ) ⩽ λ∞
1 (Λ∨)−1 · ηε(Zn) for all rank n lattices. While out

of the scope of the present paper, it is possible to give a bound depending on λ1(Λ
∨) in the ℓ2-norm

instead, without a
√
n loss as in [28, Lemma 3.5], unconditionnally on ε contrary to [30, Lemma 2.6],

but involving the kissing number of the dual.
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5.2.1. Trivial instantiations: Peikert and Klein samplers. The Gram matrix of the stan-

dard basis (ei − ei+1)1⩽i⩽n of An is

(6) Gn =



2 −1 0 0 · · · 0 0

−1 2 −1 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


∈ Zn×n.

Unrolling the Cholesky algorithm on this matrix reveals that the maximal value of its

diagonal coefficients is achieved on its first element, which value is
√
2. Hence, the Klein

sampler allows to perform Gaussian sampling at standard deviation above
√
2ηε(Z). As

Gn is a tridiagonal Toeplitz matrix, its eigenvalues are of the form 2+2 cos(kπ/(n+1)) for

1 ⩽ k ⩽ n [20]. Consequently, the largest singular value of this basis is (2+2 cos(π/(n+

1)))1/2 ⩾ 2
√
1− π2

2n2 , a worse reachable standard deviation. The other classic basis

(e1 − ei)2⩽i⩽n+1 of An has a largest singular value of
√
n+ 1, which has an even worse

geometry.

5.2.2. Constructing a better filtration. To showcase possible trade-offs using Algorithm 2,

we now describe different filtrations for An lattices. Our approach here is to rely on sam-

plers in larger exceptional lattices from the previous section—such as the A8 sampler

(Algorithm 11)—as subroutines. This new family of algorithms allows to sample very

close to the smoothing parameter of the A8. These improvements also stem from an

additional ingredient: the filtrations we highlight are close to be block-orthogonal. A

practical benefit yielded by such filtrations is the more parallelizable nature of the re-

sulting processes. While the next result is straightforward, we highlight it for the sake

of reuseability.

Proposition 5.1. Let n > k be integers and n = (k + 1)q + r the euclidean division of

n by (k + 1). Then An admits a filtration as 0 = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λq ⊂ An, where

for all 1 ⩽ i ⩽ q, Λi is isometric to an orthogonal direct sum of i copies of Ak.

Sketch. The proof amounts to identifying several copies of smaller Ak lattices, orthogonal

to each other, in the standard basis of An, by appropriately permuting the columns (for

instance the first two vectors in the usual basis of A3 generate a copy of A2) and packing
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the remaining vectors all together in the final part of the filtration. All details are

presented in Supplementary Material G.9. ■

The remaining vectors have to be dealt with, but it turns out not impacting what

follows. This allows to sample over the An lattice using Algorithm 2. Let us call Bn

the basis corresponding to the filtration of Proposition 5.1. At the deepest level of

recursion, we sample in the lattice Λ/Λq, using for example Klein sampler, or equivalently,

Algorithm 2 with the filtration corresponding to the projection of the last q+ r columns

of Bn orthogonally to V ⊥
q = Span(Λq)

⊥. Then, all subsequent samplings happen in (a

copy of) Ak, and for example, when k = 8, one calls Algorithm 11 for these last q steps.

For the sake of clarity, we restrict ourselves to k = 8 and give an equivalent iterative

algorithm. The result is proved in Supplementary Material G.

Algorithm 4: An sampler

Input: σ ⩾ max
{√

9
8ηε(Z

8), ηε(A8)
}
, a center t ∈ SpanR(An), a filtration

(Λi)i of An in the form of Bn, as in Proposition 5.1.

Output: v following distribution statistically close to DAn,t,σ2

1 Compute ci = πV ⊥
q
(bi+kq) for 1 ⩽ i ⩽ q + r

2 tq+1 ← πV ⊥
q
(t)

3 xq+1 ← Algorithm 2({c1, . . . , cq+r}, σ, tq+1)

4 u← Lift(xq+1, Vq)

5 t′ ← t− xq+1

6 Compute the orthogonal projections t′j of t′ on Span(bjk+1, . . .bjk) for

0 ⩽ j < q

7 x1, . . . ,xq ← Algorithm 11(σ, t′1), . . . , Algorithm 11(σ, t′q) /∗ can be done

in parallel ∗/
8 return x1 + · · ·+ xq + xq+1

Theorem 5.2. Let n > 8 be an integer and n = 9q + r the Euclidean division of n

by 9. Let t ∈ Rn and D be the distribution of the An sampler, for σ ⩾ max{
√

9/8 ·
ηε(Z

8), ηε(A8)}. Then for small enough ε, the statistical distance between D and DAn,t,σ2

is at most (q + 1)ε.
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6. Practical applications to lattice-based hash-and-sign signatures

falcon and its variant mitaka [15] are two efficient instantiations of the gpv frame-

work [19]. The former has recently been selected for post-quantum standardization, and

the latter enjoys better versatility as it can be theoretically instantiated over arbitrary

cyclotomic fields. While concrete parameters and security estimates are provided, the

preliminary implementation of mitaka only covers the case of power-of-2 cyclotomics.

The instantiation over other cyclotomic rings Rm relies on how the Gaussian sampling

over Rm is performed. This is non-trivial as the canonical basis of these ring of integers

fails to be orthogonal when the conductor m is not a power-of-2.

In this section, we present two novel approaches relying on our ad-hoc, explicit sam-

plers for root lattices: one for cyclotomic rings with prime conductor, one for smooth

conductor m = 2ℓ3k. We believe that the techniques introduced in this section could be

find further use in designs (for instance in [5, 24, 27]), providing more flexible parameters,

more efficient samplers, and tighter security.

Rationale of Hash-and-sign over lattices: In the gpv framework[19], signing amounts to

sampling a discrete Gaussian in some lattice close to an arbitrary target (corresponding

to a hash of the message). In efficient instantiations, the underlying lattice is a so-

called ntru lattice over a cyclotomic ring Rm, and corresponds to Mntru = (f, g)tRm ⊕
(F,G)tRm for some basis b0 = (f, g)t,b1 = (F,G)t ∈ R2

m of the module. This basis is

carefully selected [11, 15] to enable short Gaussians sampling in Mntru, and acts as the

secret key. As being an underlying Approx-cvp instance, the security against forgery

is driven by the standard deviation σsig that one can achieve with a given sampler:

one wants to minimize it. In this section, we focus on the hybrid sampler [13, 32] that

mitaka uses to sign.

6.1. Hybrid sampling and representation of cyclotomic numbers. As seen in

Section 3.4, this sampler leverages the filtration {0} ⊂ ψ(b0Rm) ⊂ ψ(Mntru), where ψ

denotes the canonical embedding extended to vectors. The calls to Algorithm 3 consider

b0Rm and Mntru/b0Rm as linear transformations11 of Rm. Under this identification,

11In practice, this second call is encoded by the orthogonalization b∗
1 of b1 in the cyclotomic field ;

such details are not our focus here, we let the interested reader refer to Supplementary Material B for a

complete presentation.



ON GAUSSIAN SAMPLING, SMOOTHING PARAMETER AND APPLICATION TO SIGNATURES 29

Section 3.3.1 and Lemma 4.1 show that the sampler of mitaka reaches standard devia-

tion as

σsig ⩾ max
(
s1(ψ(b0)), s1(ψ(b

∗
1))

)
· α · ηε(ψ(Rm)),

where α > 1 encodes how close we are able to sample from the smooting parameter

of the base ring Rm. For Algorithm 2 to reach the stated covariance, it requires two

elliptic samples12 in Rm. In [15], this is handled by Peikert’s sampler in ψ(Rm), or

equivalently, Algorithm 3 with C being the (canonical embedding of) the power basis.

This choice is made partly because of square roots computation in the field and the

use of a continuous perturbation: both steps can ben handled in quasi-linear time in

the canonical embedding (equivalently, in Fourier domain). In particular, the covariance

of the perturbation is represented by a diagonal matrix — this avoids costly Cholesky

decompositions.

The next requirement of Algorithm 3 is a spherical, discrete sample in Rm. For

power-of-two cyclotomics, the canonical embedding ψ(Rm) is essentially a scaling of

Zm/2, and so α = 1. The situation is less favorable for more general cyclotomic rings.

For example in prime cyclotomic, sampling directly the coefficients of x =
∑

j xjζ
j as

spherical Gaussians means that ψ(x) has covariance (proportional to) VpVp
t
, a matrix

far from being diagonal. In other words, going back and forth the canonical embedding

distorts severely the resulting sample in Mntru. Another approach is to sample directly

in Fourier domain; for prime or smooth conductors, the current best approaches yield

α =
√
p− 1 and α =

√
2 losses, respectively [15].

Changing the construction of the basis of Mntru is not the topic of this paper. We

focus instead on decreasing the contribution of α. Our goal is to show that a different

representation of Rm can significantly reduce this parameter. First, the codifferent ideal

in a prime cyclotomic is the principal ideal R∨
p = ⟨1−ζp

p ⟩. Using Algorithm 2 over the

filtration induced by the so-called decoding basis [21] ζip − ζi+1
p of the ideal ⟨1− ζp⟩, one

can achieve generally α =
√
2, which is the length of the largest Gram-Schmidt vector

of this basis. We can leverage this observation by relying on the next result.

Proposition 6.1 (Adapted from [34, Chap.1]). Let p be a prime, ζp a primitive p-th root

of 1, and ψ the canonical embedding of Rp. There exists linear maps τ : Rp −→ A∨
p−1

12They are scalar in the (completion of) the ring, but not when acting as transformation of Rd.
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and ϕ : ⟨1− ζp⟩ −→ Ap−1 such that, for all x ∈ Rp and y ∈ ⟨1− ζp⟩, we have

∥ψ(x)∥2 = p∥τ(x)∥2 and ∥ψ(y)∥2 = p∥ϕ(y)∥2.

The second map is not described in [34], see Supplementary Material B for details.

Recall that ψ can be computed using the Vandermonde matrix Vp associated to the p-th

primitive roots of 1. We have s1(Vp) =
√
p and sp−1(Vp) = 1, where sp−1 is the smallest

singular value. This implies 1
p∥x∥

2 ⩽ ∥τ(x)∥2 ⩽ ∥x∥2 for all x =
∑

i xiζ
i
p ∈ Rp. Identical

inequalities are obtained with ϕ and elements in ⟨1 − ζp⟩. Thanks to our samplers in

root lattices, we could use either of these maps to get Gaussian cyclotomic integers.

Which map to use? The question is perhaps more subtle than it seems, and may ulti-

mately boil down to how the resulting scheme is implemented. Providing a complete

implementation is of course out of the scope of our work. Instead, we focus only on

the expected size of signature vectors achievable with these representations, and discuss

their impact on security. Recall that the resistance against forgery is mainly driven by

the ratio of σsig by the volume of the representation of Mntru used. When looking at

the coefficients, this means we want to take the minimum of

E∨ =
ηε(A

∨
p−1)

det(A∨
p−1)

1/p−1
and E =

ηε(Ap−1)

det(Ap−1)1/p−1
.

The normalizing factor also encodes that the volume of ϕ(Mntru) or τ(Mntru) is changed.

When p = 3, we know that A∨
2 and A2 are similar lattices. Using one map or another

can be expected to be equivalent, and we will see that it covers the smooth conductor

m = 2ℓ3k case. When p grows, Lemma 5.1 shows that the smoothing of A∨
p−1 and Ap−1

behave differently, since λ1(Ap−1) stays constant while λ1(A
∨
p−1) increases to 1. A bit

less informally, using Lemma 5.1 again and det(Ap−1) =
√
p, we make the approximation

E∨

E
≈ p

1
p−1 ·

√
p

2(p− 1)
·
(
ln(p2/ε)

ln(p/ε)

)1/2

.

The ratio of logarithms decreases to 1 when ε goes to 0, and the remaining factors are

very close to
√

1/2 < 1. This suggests that considering the map τ : Rp → A∨
p−1 is

a better choice in the vacuum (once again, depending on the implementation solutions

chose, this might not be the case on specific architectures). For completeness, we describe

both possibilities.
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6.2. Sampling over cyclotomic fields of conductor 2ℓ · 3k. Here, we work in Rm =

Z[ζm] with m = 2ℓ · 3k and ℓ, k > 0, as suggested in [15]. To our knowledge, very few

works focus 13 on such conductors. From e.g. [21, 34] or Supplementary Material B, the

tensor decomposition Rm = R2ℓ ⊗ R3k leads to an orthogonal decomposition (tied to

the powerful basis [21])

Rm
∼= Z

ℓ
2 ⊗

( 3k−1⊕
i=1

R3

)
∼=

m
6⊕

i=1

R3.

By orthogonality, sampling in R3 amounts to m/6 independent sampling in A∨
2 , which

are done as explained in Section 5 by projecting samples from Z3 (see also Algorithm 8

in Supplementary Material G). Alternatively, we have an orthogonal decomposition

⟨1 − ζm/3
m ⟩ = m

2 R
∨
m
∼=

⊕m/6
i=1 ⟨1 − ζ3⟩ (see also [21, Cor. 2.18]). We could use instead

Algorithm 9 with this decomposition.

6.2.1. Efficiency and signature quality. Being a combination of Algorithm 2 with either

Algorithm 8 or Algorithm 9, but because we want to control the statistical properties of

the output, we can reasonably go as low as

(7) σ′ = η6ε/m(A∨
2 ) ≈

√
1

2
· η2ε/3(Z

m
3 ) or σ′ = η6ε/m(A2) ≈

√
3

2
· η2ε/3(Z

m
3 ),

where approximations come from Section 5.1. We emphasize again here that the vol-

ume of the involved lattice is changed: after normalization, even though the values are

different, their impact on the security is the same.

The running time is linear in the conductor, and the sampler requires m/2 samples

from DZ,∗,σ2 . The approach is completely parallelizable, and also memory-efficient: we

only needs to store a table for integer Gaussians of a small width. Moreover, thanks to

the small Gaussian parameter, the constant-time implementation is easy and efficient.

6.2.2. Comparisons with other methods. On the one hand, the basis b0,b1 is not changed

between our methods and the previous ones. On the other hand, previous approaches

such as [15] could only sample representants of Rm to a standard deviation of σ′ ⩾
√
2 · ηε(Zm/3). This ≈ 2 factor in our favour translates quantitatively into a NIST

13falcon showcased an FFO-style sampler over cyclotomic rings of conductor 3 · 2ℓ in the round 1

of the NIST call. It was abandoned because its high technicality. Such rings are also the focus of the

implementation in [22].



32 THOMAS ESPITAU⋇, ALEXANDRE WALLET⋆, AND YANG YU†

Table 1. Concrete values for forgery compared to Mitaka base sampler.

mitaka This work

Classical Quantum NIST Level Classical Quantum NIST Level

d = 648 117 103 I− 137 121 II

d = 768 147 129 II 170 150 III

d = 864 168 148 III 195 171 IV

d = 972 194 170 IV 224 197 V

security14 level-up for each 3-smooth conductors parameter sets proposed in [15], as

reported in Table 1.

Another generic method for low-dimensional lattices with a small width is tabulated

sampling. Concretely, one precomputes a CDT-like table for all short vectors of A2 and

then outputs the sample through table look-up. However, the size of the table for DA2,σ′2

is much larger than the one for DZ,σ′2/3 in our algorithm, which significantly lowers the

speed of the constant-time implementation.

6.3. Sampling over prime cyclotomic fields. Proposition 6.1 gives two immediate

approaches. With the map τ , we can directly project samples of Zp onto samples of

A∨
p−1. For the map ϕ, the situation is less nice, but we can nevertheless use our efficient

Algorithm 4.

6.3.1. Efficiency and signature quality. Both approaches are linear in p, with Algorithm 4

main cost coming from the sampling in A8 (Algorithm 11). Similarly as the smooth case,

we want to control the statistical properties of the output. Thus the approach using

Algorithm 8 and the approach of Algorithm 4 can reach respectively

(8) σ′ = ηε(A
∨
p ) ≈

√
1

2
· η2ε/p(Zp−1) or σ′ = ηε/q(A8) ≈

√
9

8
· η2ε/9(Z8q),

where approximations come from Section 5.1 and we have q = ⌊p/9⌋.

The isochronous implementation for both approaches is easy and efficient, as the in-

volved algorithms only rely on an integer sampler of a fixed width and simple rejection

14We use here the same security estimates as in [15], in the so-called Core-SVP model for fair

comparison.
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Table 2. Comparisons with other samplers over prime cyclotomics.

Quality Running time

Peikert, canonical basis
√
p · ηε(Zp−1) O(p2)

Klein, canonical basis
√
p− 1 · ηε(Zp−1) O(p2)

Peikert, decoding basis ≈ 2
√

1− π
2p2
· ηε(Zp−1) O(p)

Klein, decoding basis
√
2 · ηε(Zp−1) O(p)

Coefficient embedding ηε(Z
p−1) O(p)

Ours (τ) ηε(A
∨
p−1) ≈

√
1
2 · η2ε/p(Z

p−1) O(p)

Ours (ϕ) ηε/q(A8) ≈
√

9
8 · η2ε/9(Z

8q) O(p)

samplings. They are both highly parallelizable, thanks to the filtration shown in Propo-

sition 5.1; and memory-efficient, as the base sampling has small width
√

9/8 · ηε(Z) and
it does not need to store many intermediate values due to the parallelism.

6.3.2. Comparisons with other methods. In [21, Sec. 6.3], the ideal ⟨1 − ζp⟩ and the

identification of prime-power cyclotomic rings were used to sample continuous Gaussians,

by mean of the so-called “decoding basis”, which is the Z-basis of the ideal. To the best

of our knowledge, we give the first concrete Gaussian sampler in prime-power cyclotomic

rings. From the map ϕ, we can directly identify the Gram matrix of Rp as a scaling by

p of that of A∨
p−1:

G∨
p =


p− 1 −1 · · · −1 −1
−1 p− 1 · · · −1 −1
...

...
...

...
...

−1 −1 · · · −1 p− 1

.

The largest element in the diagonal of the Cholesky of Gp is
√
p− 1, which drives the

quality of a Klein approach (as done in [15]). An approach à la Peikert with Algorithm 3

is driven by the Vandermonde matrix Vp, and we have s1(Vp) =
√
p. Considering now

the decoding basis as a matrix Ap with Gram matrix Gp (6) (equivalently, using the map

ϕ), we have identified the meaningful quantities in Section 5.2. Comparisons with our

approaches are displayed in Table 2.
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6.3.3. Practical impact. The improvement over mitaka is significant, as seen in Table 3.

On the one hand, we can use finely tailored conductors to match the requirements of

the NIST level, which allows working in smaller dimensions. But we can also use NTT-

friendly moduli q that are smaller than the traditional q = 12289 used for power-of-two

cyclotomics, which also allows reducing both the public key and signature sizes. All

in all, after compression, we gain between 50 and 200 bytes at each security level on

the size using our new sampler (for fairness of the comparison, the signature size is not

optimized using the recent results of [17]).

Table 3. Intermediate parameters and security levels for prime-Mitaka.

Conductor Modulus Quality Security Pub. key size Sig. size

m : φ(m) q α (C/Q/NIST level) (bytes) (bytes)

falcon 1024 : 512 12289 1.17 124/112/NIST-I 666

mitaka 1994 : 648 3889 2.13 136/123/NIST-I 827

This work ***/***/NIST-I

falcon N/A N/A N/A N/A N/A N/A

mitaka 2304 : 768 18433 2.20 167/151/NIST-II 1080

This work 683 : 682 1367 2.125 157/138/NIST-II 799

falcon N/A N/A N/A N/A N/A N/A

mitaka 2592 : 864 10369 2.25 192/174/NIST-III 1176

This work 857 : 856 6857 2.215 207/182/NIST-III 1120

falcon N/A N/A N/A N/A N/A N/A

mitaka 2916 : 972 17497 2.30 220/199/NIST-IV 1359

This work 919 : 918 3677 2.247 223/196/NIST-IV 1155

falcon 2048 : 1024 12289 1.17 285/258/NIST-V 1792 1280

mitaka 2048 : 1024 12289 2.33 233/211/NIST-V 1792 1405

This work 1009 : 1008 10091 2.30 250/219/NIST-V 1360
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Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR TCHES,

2018(1):238–268, 2018. https://tches.iacr.org/index.php/TCHES/article/view/839.
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Appendix A. Additional content on lattices

A.1. On effective lifting. Below is the pseudo-code for Nearest Plane based lifting.

Algorithm 5: Lift (by Babai’s nearest plane)

Input: A lattice basis B = (b1, . . . ,bn) of Λ
′ in Λ, a vector t ∈ Λ.

Result: A vector s ∈ Λ in the coset t+ Λ′.

1 Compute the Gram-Schmidt orthogonalization (b∗
1, . . . ,b

∗
k) of B

2 s← t

3 for i = k downto 1 do s← s−
⌊
⟨s,b∗

i ⟩
∥b∗

i ∥2

⌉
bi

4 return s

A.2. An example of torsion in quotient of lattices. Let Λ = Z2 be the square

lattice of rank 2.

• Simple Torsion, or “full rank”. Let Λ′ = (2Z)2 be its index-4 sublattice consisting

of vectors with even coefficients. Then Λ/Λ′ = Z2/(2Z)2 = (Z/2Z)2 is the Klein group,

a finite group of order 4, and its free part is {0}. Representative for the torsion are for

instance (0, 0), (1, 0), (0, 1) and (1, 1).

• Torsion-free. Let Λ′ ∼= Z be its sublattice of rank 1 consisting of vectors with null

first coefficient. Then Λ/Λ′ ∼= Z is a lattice of rank 1: the set of vectors with second

coefficient equal to zero.

• Mixed case. Let Λ′ ∼= 2Z be its sublattice of rank 1 consisting of vectors with their

second coefficient even. Then we have: Λ/Λ′ ∼= Z × Z/2Z, encoding the coset space

as choosing the parity of the second coefficient (i.e., the torsion part Z/2Z) and then

choosing the first coefficient without conditions (i.e., the free part Z). A non trivial

representative for the torsion is (0, 1), and indeed the lattice spanned by Λ′ and (0, 1) is

Z.

Appendix B. Additional background on cyclotomic fields

B.1. Cyclotomic fields. We let Z∗
m be the multiplicative group of the ϕ(m) integers

invertible modulom, where ϕ is Euler’s totient function. Let ζm be a primitivem-th root

of unity. Them-th cyclotomic polynomial Φm(X) =
∏

i∈Z∗
m
(X−ζim) ∈ Z[X]. The degree



of Φm(X) is d = ϕ(m). We call Rm = Z[ζm] ≃ Z[X]/(Φm(X)) the m-th cyclotomic ring

and Km = Q[ζm] the m-th cyclotomic field. Any f ∈ Km can be uniquely written as

f =
∑n−1

i=0 fiζ
i
m with fi ∈ Q. The coefficient embedding identifies f to its vector of

coefficients (f0, . . . , fd−1).

The cyclotomic field Km has exactly d embeddings fixing elements of Q. Concretely,

the embedding ψi for i ∈ Z∗
m is defined by ψi(ζm) = ζim. Let ψ(f) = (ψi(f))i∈Z∗

m
∈ Kd

m

be the canonical embedding of f ∈ Km. We can use it to define the conjugate of f as

f∗ = (ψ1(f), . . . , ψd(f)). The trace is the Q-linear map defined as Tr(f) =
∑

i∈Z∗
m
ψi(f).

It gives an inner product as Tr(fg∗) = ⟨ψ(f), ψ(g)⟩ and an euclidean norm ∥ψ(f)∥2 =

Tr(ff∗). This product can be extended to vectors in a way that gives a positive definite

hermitian form over Kk
m, compatible with the geometry. We only need the case of

k = 2. The form is defined as ⟨(f, g), (F,G)⟩ = f∗F + g∗G. In particular, elements

⟨(f, g), (f, g)⟩ = ff∗+ gg∗ have all their embeddings real and positive. Thus for all pairs

(f, g), (F,G) of vectors in K2
m,

(F,G)∗ := (F,G)− ⟨(f, g), (F,G)⟩
⟨(f, g), (f, g)⟩

(f, g)

is well-defined. One checks that ⟨(f, g), (F,G)∗⟩ = 0, which gives a notion of orthogonal-

ity over K2
m and accordingly, (F,G)∗ is the Gram-Schmidt orthogonalization of (F,G)

with respect to (f, g) for the trace product.

The Vandermonde matrix associated to the p-th primitive roots ζp,1, . . . , ζp,p−1 of 1 is

Vp =


1 ζp,1 ζ2p,1 . . . ζp−2

p,1

1 ζp,2 ζ2p,2 . . . ζp−2
p,2

... . . .

1 ζp,p−1 ζ2p,p−1 . . . ζp−2
p,p−1

.

We have ψ(x) = Vp(x1, . . . , xp−2)
t. It is known that the largest and smallest singular

values are s1(Vp) =
√
p and sp−1(Vp) = 1. Its Gram matrix Vp

t
Vp has determinant

∆K = pp−2, which is the discriminant (or the squared discriminant sometimes) of the

field Kp.

B.2. Identifications between cyclotomic ideals and root lattices. Most of the

next facts are well-known, and can be found e.g. in [14, 21, 34]. A first interesting

decomposition arises when m = pℓqk for primes p ̸= q: we have Rm = Rpℓ ⊗ Rqk .



Additionally, we have Rpk =
⊕pk−1

i=1 Rp, which is an orthogonal sum under the canonical

embedding.

We note (ei) the canonical basis of Rp. Let bi =
p−1
p ei − 1

p

∑
1⩽i ̸=j⩽p ej ∈ Zp. It is

known that A∨
p−1 has basis given by (bi)1⩽i⩽p−1. The key fact for what follows is the

isometry between Rp and A∨
p−1:

τ : Rp → A∨
p−1, defined by ϕ(ζip) = bi+1 for 0 ⩽ i ⩽ p− 2.

The normalization for the isometry is seen here as ∥ψ(x)∥2 = p∥τ(x)∥2.

A second identification involves the co-different ideal R∨
p of Rp: it is the principal

ideal R∨
p = ⟨1−ζp

p ⟩, and acts the dual lattice to Rp. From what precedes, we get a

map τ∨ : R∨
p → Ap−1 sending the dual basis of 1, ζp, . . . , ζ

p−1
p for the trace product,

also called decoding basis by [21], to the basis (e1 − ei)2⩽i⩽p of Ap−1. We now have

p∥ψ(x)∥2 = ∥τ∨(x)∥2. This map turns out to be mildly less interesting for our purpose.

Nevertheless, the ideal ⟨1− ζp⟩ admits the Z-basis (1− ζp), . . . , ζp−2
p − ζp−1

p . Letting

ui = ζip − ζi+1
p , we have:

tr(uiu
∗
i ) = ∥ψ(ui)∥2 = 2p and tr(uiu

∗
j ) = ⟨ψ(ui), ψ(uj)⟩ =

−p if |i− j| = 1

0 else.

Up to a factor p, this is the Gram matrix Gp−1 (6) associated to the standard basis of

Ap−1. Hence, if we define

ϕ : ⟨1− ζp⟩ −→ Ap−1 by ϕ(ui−1) = ei + ei+1 for 1 ⩽ i ⩽ p− 1,

it identifies both lattices and we have ∥ψ(x)∥2 = p∥ϕ(x)∥2.

Appendix C. Proofs of Section 2

C.1. Cosets mass. Let Λ ⊂ Rm be a lattice and x ∈ Rm. For Σ ≻ 0, let P be the

orthogonal projection onto Λ⊥
R, where orthogonality is taken with respect to the inner

product x 7→ xtΣ−1x. Then we have ρΣ(x + Λ) ⩽ ρΣ(P (x)) · ρΣ(Λ). If moreover Λ

is primitive in Λ′, we have ρΣ(Λ
′) ⩽ ρΣ(Λ)ρΣ(P (Λ

′)). The equality case occurs when

Λ′ = Λ ⊥ P (Λ′).

Proof (Adapted from [4, Lemma 2.8.2]). We recall the notation: let ΛR be the real space

spanned by Λ, and P be the orthogonal projection onto Λ⊥
R, where the orthogonality is



for the quadratic form x 7→ xtΣ−1x. For all x ∈ Rm, we can write elements of x+Λ as

x+ u = (x− P (x) + u) + P (x), where x− P (x) + u ∈ ΛR. By orthogonality, we write

ρΣ(x+Λ) = ρΣ(P (x)) ·
∑

u∈Λ ρΣ(x−P (x)+u). The right-hand sum is ρΣ(x−P (x)+Λ)

so we get the first claim with Lemma 2.1. When Λ is primitive in Λ′, then P (Λ′) identifies

to the lattice Λ′/Λ, and the sum over all x ∈ P (Λ′) gives the second claim. ■



Appendix D. Proofs of Section 3

D.1. Short exact sequences and sampling. For completeness, we recall the Poisson

Summation Formula for Gaussian functions. For any rank n lattice Λ, we have

(9) ρs(Λ) =
sn

detΛ
· ρ1/s(Λ∨).

[Modularity of smoothing parameter] Let Λ be a lattice and 0 < ε <
√
17− 4, then

η3ε(Λ) ⩽ min
Λ′⊂Λ

max
(
ηε(Λ

′), ηε

(
Λ⧸Λ′

))
.

where ηε(Λ/Λ′) is set by convention to 0 if the quotient is of torsion, and where the

minimum ranges over all possible sublattices of Λ.

Proof. Let Λ′ be any sublattice of Λ and s ⩾ max(ηε(Λ
′), ηε(Λ/Λ′)). Now, consider the

orthogonal projection π of Λ onto the orthogonal space to Λ′
R, for the standard inner

product. Lemma 2.2.1 gives that ρs(Λ) ⩽ ρs(Λ′) · ρs(π(Λ)). Using Identity (9) and the

fact that det(Λ) = det(π(Λ)) det(Λ′), this is equivalent to ρ1/s(Λ
∨) ⩽ ρ1/s(Λ′∨)ρ1/s(π(Λ)

∨).

Because they have the same rank, Λ′ ⊂ Λ′ is equivalent to Λ′∨ ⊂ Λ′∨, so we have

ρ1/s(Λ′∨) ⩽ ρ1/s(Λ
′∨). By assumption on s, this implies ρ1/s(Λ

∨) ⩽ (1 + ε)2, and we

conclude by noting that our choice of sublattice was arbitrary. ■

[Correctness of the short exact sampler] When Σ ≻ ηε(Λ
′), Algorithm 1 is correct.

Moreover, let D be the distribution of its output. For ε < 1
2 , we have

sup
v∈Λ

∣∣∣∣ D(v)

DΛ,t,Σ(v)
− 1

∣∣∣∣ ⩽ 6(δ + ε).

In particular, D is within statistical distance 3(δ + ε) of DΛ,t,Σ.

Proof. Let ε > 0 and v ∈ Λ, and as usual denote by T the torsion subgroup of Λ/Λ′.

Independence of the sampling oracles of lines 3 and 4 and law of total probability yields:

D(v) = Pr(u′ = v − uq |q = π(v)) Pr(q = π(v)).

By hypothesis on the oracle Oq and Lemma 3.1, we have:

(10) Pr(q = π(v)) ∈
[
1− δ
1 + δ

1− ε
1 + ε

,
1 + δ

1− δ
1 + ε

1− ε

]
· 1

|T|
· Dπ(Λ),π(t),Σ(π(v)).



On the other hand we have π(uq) = q and thus:

(11)

Pr(u′ = v − uq|q = π(v)) =
ρΣ(v − uq − (Id− π)(t− uq))

ρΣ(Λ′ − (Id− π)(t− uq))

=
ρΣ((Id− π)(v − t))

ρΣ(Λ′ − (Id− π)(t− uq))
.

Because Σ ≻ ηε(Λ′) ⩾ ηε(Λ′), we obtain that

ρΣ(Λ
′ − (Id− π)(t− uq)) ∈

[
1,

1 + ε

1− ε

]
· 1

|T|
ρΣ(Λ′ − (Id− π)(t− uq))

∈
[
1− ε
1 + ε

,

(
1 + ε

1− ε

)2]
· 1

|T|
ρΣ(Λ′ − (Id− π)(t))

We then find that:

D(v) ∈

[
1− δ
1 + δ

(
1− ε
1 + ε

)3

,
1 + δ

1− δ

(
1 + ε

1− ε

)2
]
· ρΣ(π(v − t))

ρΣ(π(Λ)− π(t))
· ρΣ((Id− π)(v − t))

ρΣ(Λ′ + (Id− π)(t))

Routine calculations conclude the proof. ■

D.2. On filtration bounds and the filtered sampler. Let k ⩾ 1 be an integer, Λ a

lattice and ε ⩽ e−k/2/
√
2. We have

ηε(Λ) ⩽ min
(Λi)i

max
i
η ε

k+1

(
Λi⧸Λi−1

)
,

where the minimum is taken over all possible filtrations of length k of Λ.

Proof. Let Vi be the real space spanned by Λi, and Pi be the orthogonal projection

onto V ⊥
i , where the orthogonality is for the quadratic form x 7→ xtΣ−1x. Lemma 2.1

gives ρΣ(Λ) ⩽ ρΣ(Pk−1(Λ)) · ρΣ(Λk−1). Letting P0 be the identity, we obtain by induc-

tion ρΣ(Λ) ⩽
∏k

i=1 ρΣ(Pi−1(Λi)) =
∏k

i=1 ρΣ(Λi/Λi−1). Using the Poisson Summation

Formula (9) and taking Σ ≻ maxi ηε/(k+1)(Λi/Λi−1) gives

ρΣ−1(Λ∨) ⩽
k∏

i=1

ρΣ−1

((Λi⧸Λi−1

)∨)
⩽

(
1 +

ε

k + 1

)k

.

Calculations concludes the proof.

■



[Correctness of the filtered sampler] Algorithm 2 is correct. Moreover, let D be the

distribution of its output. For small enough ε, we have

sup
v∈Λ

∣∣∣∣ D(v)

DΛ,t,Σ(v)
− 1

∣∣∣∣ ⩽ (2k + 1)ε.

In particular, D is within statistical distance (k + 1)ε of DΛ,t,Σ.

Proof. At Step 5, the algorithm recalls itself on the filtration obtained by quotienting by

its first element. The first time it happens, the input filtration is then {0} ⊂ Λ2/Λ1 ⊂
· · · ⊂ Λ/Λ1. By isomorphism theorems, the quotient is then (isometric to) Λ/Λ2, and by

induction, at the i-th call, the input filtration is therefore {0} ⊂ Λi+1/Λi ⊂ · · · ⊂ Λ/Λi,

with a corresponding flag of subspaces (Vi+1 ∩ V ⊥
i ) ⊂ . . . ⊂ (V ∩ V ⊥

i ). By assumptions,

the Gaussian oracle is always able to sample in the first element Λi+1/Λi of its input

filtration. The standard deviation is always above the smoothing parameter of such

lattices, and Algorithm 2 outputs an element in the lattice thanks to the properties of

Algorithm 5.

We now analyze the distribution of the outputs. Let ε > 0 and set δ = 1−ε
1+ε . We

use the following loop invariant: if the input filtration contains k − 1 elements and the

target center is t′, then the probability that Algorithm 2 outputs some vector v belongs

to
[
δk−1, δ1−k

]
· DΛ′,t′,Σ(v), where Λ′ is the lattice spanned by the input filtration. This

hypothesis is satisfied for any filtration with 1 element. Let us assume now that it is

true up to some k ⩾ 1. By construction, we can write u = z + v for some v ∈ V1.

In particular, we have (Id − π)(t − u) = (Id − π)(t) − v. Next, let P (z) resp. P (u′)

the probability to obtain z resp. u′. Orthogonality gives us ρΣ(u + u′ − t) = ρΣ(z −
π(t))ρΣ(u

′ − (Id− π)(t) + v). The induction hypothesis then yields

P (z)P (u′) ∈
[
δk−1, δ1−k

]
· ρΣ(z− π(t))
ρΣ(Λ/Λ1 − π(t))

· ρΣ(u
′ − (Id− π)(t) + v)

ρΣ(Λ1 − (Id− π)(t) + v)

=
[
δk−1, δ1−k

]
· DΛ,t,Σ(u+ u′) · ρΣ(Λ− t)

ρΣ(Λ/Λ1 − π(t))ρΣ(Λ1 − (Id− π)(t) + v)
.

Since Σ ⩾ ηε(Λ1), we have ρΣ(Λ1− (1−π)(t)+v) ∈ [δ, δ−1] · ρΣ(Λ1− (Id−π)(t)). With

a last orthogonality argument, we obtain our claim on the distribution. ■



Appendix E. Complements and proof of Section 4

On the linear sampler. [Correctness of the linear sampler] Let r ⩾ ηε(Λ(C)). If

sn(∆) > r2 · s1(T)2, then Algorithm 3 is correct. Moreover, let D be the distribution of

its output. For ε < 1/2, we have

sup
v∈Λ

∣∣∣∣ D(v)

DΛ,t,∆(v)
− 1

∣∣∣∣ ⩽ 4ε.

In particular, D is within statistical distance 2ε of DΛ,t,∆.

Proof. The support of the output distribution is correct by construction. By construc-

tion, the probability of sampling some p ∈ CR := spanR(C),x ∈ L(C) and outputting

y is the marginalized distribution

P (y) = det(Σp)
−1/2 ·

∫
CR

ρΣp(p) · ρr2(x−T⋆t− p)

ρr2(L(C)−T⋆t− p)
dp.

Gaussian functions have also good multiplicative properties (see for instance [29, Fact

2.10]): there exists15 a positive definite matrix Σ′ and a vector t′, both over CR, such

that:

ρΣp(p)ρr2(x−T⋆t− p) = ρΣ(x−T⋆t)ρΣ′(p− t′),

where we also use that Σp + r2 = Σ. Combining these two equalities, we rewrite the

distribution of the output as

P (y) = det(Σp)
−1/2 · ρΣ(x−T⋆t) ·

∫
CR

ρΣ′(p− t′)

ρr2(L(C)−T⋆t− p)
dp.

By definition of the pseudo-inverse, we have thatT⋆y = x and thatTT⋆ is the orthogonal

projection P onto ΛR. This gives(x−T⋆t)tΣ−1(x−T⋆t) = (y− t)tPt∆−1P(y− t) and

we obtain

ρΣ(x−T⋆t) = ρ∆(y − t).

Observe that if m = n, we have T⋆ = T−1 so that P = In and the result holds as well.

By assumptions on r and thanks to Lemma 2.1, we now have

P (y) ∈
[
1,

1 + ε

1− ε

]
·
(
detΣ′

detΣp

)1/2

· ρ∆(Λ− t)

ρr2(L(C))
· DΛ,t,∆(y),

15Their expressions can be made explicit but are not needed to understand the rest of the proof.



and summing over all y to handle the normalization constants, we deduce

P (y) ∈
[
1− ε
1 + ε

,
1 + ε

1− ε

]
· DΛ,t,∆(y).

Our claims on the maximum relative error and the statistical distance follow. Lastly, we

show that the condition on the singular values is sufficient. The algorithm is correct as

soon as Σ ≻ r2In, or equivalently when s1(T
t∆−1T) < r−2. Using standard properties of

operator norms, we see that s1(T
t∆−1T) ⩽ s1(T)2 · sn(∆)−1, and the results follow. ■

Appendix F. Application: sampling in tensor lattices

As a direct application of Section 4, we present a novel (up to our knowledge) approach

to sample in tensor products of lattices. They appear naturally with rings of cyclotomic

integers of smooth conductors. In particular, one could use the algorithm of this section

to sample in Rpℓqk for p ̸= q prime, in several ways depending on how the ring is

embedded in a euclidean space.

F.1. Tensors and related bounds. Let A ∈ Rm1×n1 and B ∈ Rm2×n2 . Recall that

L(A)⊗L(B) = L(A⊗B), where A⊗B is the Kronecker product between these matrices:

A⊗B =


a1,1B a1,2B · · · a1,n1B

...
...

. . .
...

am1,1B am1,2B · · · am1,n1B

.


The mixed product property states that

A⊗B = (A⊗ Im2)(In1 ⊗B) = (Im1 ⊗B)(A⊗ In2).

Tensoring with identities preserves geometric properties. Let A ∈ Rm×n of full

column rank, k ̸= ℓ positive integers, and ε < 1/2. We have:

(1) s1(A⊗ Ik) = s1(Iℓ ⊗A) = s1(A);

(2) ηε(L(Ik ⊗A)) ⩾ ηε/k(L(A)) ⩾ η2ε(L(Ik ⊗A)).

(3) ηε(L(Ik ⊗A)) = ηε(L(A⊗ Ik));

Proof. Since Ik⊗A = diag(A, . . . ,A), we have s1(Ik⊗A) = s1(A). Next, the dual basis

of Ik ⊗A is Ik ⊗A∨. We then have

ρ1/s(L(Ik ⊗A)∨) = ρ1/s
(⊕

i⩽k

L(A)∨
)
= ρ1/s(L(A)∨)k.



Taking s = ηε(L(Ik ⊗A)) gives ρ1/s(L(A)) ⩽ (1 + ε)1/k ⩽ 1 + ε/k, so s ⩾ ηε/k(L(A)).

Similarly, taking s = ηε/k(L(A)) gives ρ1/s(L(Ik ⊗ A)) ⩽ (1 + ε/k)k ⩽ 1 + 2ε, and

the second property follows. To conclude, one checks that for all k, there always exist

permutations P ∈ Rkm×km,Q ∈ Rkn×kn such that P(A ⊗ Ik)Q = Ik ⊗ A. Since

permutations matrices are isometries of the standard Euclidean norm, we have ∥P(A⊗
Ik)Qx∥ = ∥(A⊗ Ik)Qx∥ for all x ∈ Rkn. Adding that Q is an invertible transformation

of Rkn that stabilizes Zkn, we obtain s1(A ⊗ Ik) = s1(Ik ⊗A) and ρ1/s(L(Ik ⊗A)) =

ρ1/s(L(A⊗ Ik)). ■

F.1.1. Smoothing bound for tensors. Combining these properties with Lemma 4.1 gives

a bound on the smoothing parameter of a tensor product of lattices. Our bound involves

singular values of the left factor T in the mixed-product decomposition ofA⊗B, whereas

the bound given in [25, Corollary 2.7] is associated to the maximal length ∥B∥GS of the

Gram-Schmidt vectors of that factor. It is known that ∥B∥GS ⩽ s1(B), so that our

bound is generally of worse quality, but its effectiveness does not rely on Gram-Schmidt

orthogonalization. In essence, this is the same tradeoff as between Peikert’s randomized

round-off approach [29] and Klein’s randomized nearest plane (e.g., [19]).

Lemma F.1. Let Λ = L(A)⊗ L(B) for matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 of full

rank, where mi ⩾ ni. We have

ηε(Λ) ⩽ min
(
s1(A) · ηε/(2n1)(L(B)), s1(B) · ηε/(2n2)(L(A))

)
.

F.2. A sampling algorithm for tensor lattices. Using Algorithm 3, this bound

directly translates into Algorithm 6, where it is assumed that oracles for discrete Gaussian

sampling in L(A) and L(B) are given.



Algorithm 6: Tensor sampler

Input: Two matrices A ∈ Rm1×n1 ,B ∈ Rm2×n2 with mi ⩾ ni, giving a basis

of Λ = L(A⊗B); a center t ∈ Λ⊗R; r ⩾ 0; a positive definite

matrix ∆ ∈ Rm1m2×n1n2

Output: y ∈ Λ with distribution statistically close to the discrete Gaussian

DΛ,t,∆.

1 Select (T,C) ∈ {(A⊗ Im2 , In1 ⊗B), (Im1 ⊗B,A⊗ In2)} minimizing

s1(T) · ηε(L(C))

2 Σ← (Tt∆−1T)−1

3 return Algorithm 3(T,C, t,∆,Σ, r)

Corollary F.1 (of Theorem 4). Let Λ = L(A)⊗L(B) for matrices A ∈ Rm1×n1 and B ∈
Rm2×n2 of full rank, where mi ⩾ ni. Let (T,C) ∈ {(A⊗Im2 , In1⊗B), (Im1⊗B,A⊗In2)}
be the pair minimizing s1(T) · ηε(L(C)), and let also r ⩾ ηε(C). Algorithm 6 is correct

when sn(∆) ⩾ r2 ·s1(T)2. Moreover, let D be the distribution of its output. For ε < 1/2,

we have

sup
v∈Λ

∣∣∣∣ D(v)

DΛ,t,∆(v)
− 1

∣∣∣∣ ⩽ 4ε.

In particular, D is within statistical distance 2ε of DΛ,t,∆.

The above statement is formulated to achieve the “smallest possible” covariance ma-

trix, which is often the goal in practice for security reasons. In other contexts, it might

happen that the other decomposition is chosen or needed. The choice of ε in our for-

mulation somewhat hides a dimensional factor coming from tensoring A or B with an

identity matrix, as expressed in the second property in Supplementary Material F.1.



Appendix G. On the root lattice samplers

In this section, we details for the ad-hoc samplers listed in Theorem 5.1.

G.1. Sampling in the face-centered lattice Dn. The Dn lattice can be described as

the vectors of Zn with coordinates in the canonical basis (ei)i⩽n summing to an even

number. Its index in Zn is 2. This congenial definition leads to a very natural rejection-

based approach from samples over Zn: a sample either belongs to Dn or either to its

non-zero coset (with almost equiprobability above the smoothing parameter). In other

words, it is an instantiation of the domain restriction approach of Proposition 3.1, from

which Proposition G.1 is obtained.

Algorithm 7: Face centered cubic sampler

Input: A parameter σ ⩾ ηε(Dn) and a center t =
∑
tiei ∈ Rn.

Output: v ∈ Dn following distribution statistically close to DDn,σ,t

1 repeat

2 z1 ← DZ,σ,t1 , . . . , zn ← DZ,σ,tn

3 until
∑
zi ∈ 2Z

4 return z =
∑
ziei

Proposition G.1. Let D the distribution of outputs of Algorithm 7. Then D is at

statistical distance at most ε of DDn,σ,t. Moreover, we have

sup
z∈Dn

∣∣∣∣ D(z)

DDn,σ,t(z)
− 1

∣∣∣∣ ⩽ 2ε,

and it requires two tries in average.

G.2. Sampling in A∨
n. The algorithm is straightforward from Lemma 3.2 and the iden-

tification A∨
n = π1⊥(Zn+1), where 1 = (1, . . . , 1). It is displayed below for referencing

purposes. No smoothing condition is needed for correctness. Of course the statistical

properties of the output could be quite far from being Gaussian-like if one would sample

with very small standard deviation.



Algorithm 8: A∨
n sampler

Input: A parameter σ > 0 and a center t ∈ 1⊥.

Output: v ∈ A∨
n following distribution statistically close to DA∨

n ,t,σ
2

1 z← DZn+1,t′,σ2

2 y← z− ( 1
n+1

∑
j zj)

n+1
i=1

3 return y

G.3. Sampling in A2. It is known that a rank 2 lattice is always similar to its dual; the

similarity in the case of A2 is the composition of the rotation of 1⊥ by −π/2 and fixing 1

with a scaling by
√
3. Algorithm 9 below follows this idea: project a sample z← DZ3,t

orthogonally onto the hyperplane 1⊥ then apply the similarity.

Algorithm 9: Hexagonal sampler

Input: A parameter σ > 0 and a center t ∈ 1⊥.

Output: v ∈ A2 following distribution statistically close to DA2,σ,t

1 y← A∨
n sampler(σ/

√
3, t) // Algorithm 8 with n = 2.

2 return x←
√
3R−π/2(y)

Again, no smoothness condition is needed, thanks to the orthogonal decomposition.

Theorem G.1. Algorithm 9 is correct. The distribution of its output is as close to

DA2,t,σ as the Gaussian integer sampler is close to DZ3,t′,σ/
√
3, for any lift t′ of t/

√
3 in

R3.

Proof. At Step 3, y is computed by orthogonal projection onto 1⊥ and thus belongs to

A∨
2 . The probability to obtain y is therefore

P (y) = P (z ∈ y + (Z3 ∩ 1)) =
ρσ/

√
3((Z

3 ∩ 1) + y − t′)

ρσ/
√
3(Z

3 − t′)
.

By orthogonality, we can write ρσ/
√
3(y− t′ + (Z3 ∩ 1)) = ρσ/

√
3(y− t/

√
3)ρσ/

√
3((Z

3 ∩
1)− t′ + t/

√
3), and decompose similarly the coset at the denominator. This gives us

P (y) =
ρσ(
√
3y − t)

ρσ(
√
3A∨

2 − t)
,



and the result follows from the radiality of the Gaussian function. ■

G.4. Sampling in the A3 lattice. There exists an isometry between D3 and A3 (coming

from the exceptional Lie isomorphisms in small dimnensions), which allows us to transfer

the previous sampler on D3 into a sampler for A3. One possible isometry consists in

sending (1, 1, 0) to (1,−1, 0, 0), (1, 0, 1) to (1, 0,−1, 0) and (0, 1, 1) to (1, 0, 0,−1). Indeed,
one checks that both these bases have the same Gram matrix by direct computation.

Hence we can sample in A3 with standard deviation above σ ⩾ ηε(A3) using (an expected

number of) three samples in Z4

Remark. A similar algorithm would enable to sample in the dual lattice D∨
3 = D3 ∪

((1/2, 1/2, 1/2) + D3) (disjoint union).

G.5. Sampling in the E8 lattice. The E8 lattice is an unimodular lattice in R8. It

belongs to the class of Barnes-Wall lattices, as one of its first non-trivial member. It is

not, however, isometric to Z8. As seen e.g. in [23, 7], it can be written as a disjoint union

of cosets as E8 = D8 ∪ (1/2, . . . , 1/2)+D8, where D8 is the lattice of integer vectors with

coordinates summing to an even number. This leads to the following sampling algorithm,

where we let h = (1/2, . . . , 1/2). This time, it is an instantiation of the domain extension

sampler of Corollary 3.1, from which Proposition G.2 is obtained.

Algorithm 10: E8 sampler

Input: A parameter σ ⩾ ηε(D8) and a center t ∈ R8.

Output: v following distribution statistically close to DD8,σ,t

1 b← Bernoulli

2 z← Algorithm 7(σ, t− b · h)
3 return b · h+ z

Proposition G.2. let D the distribution of outputs of Algorithm 10. Then D is at

statistical distance at most 2ε of DE8,σ,t. Moreover, we have

sup
z∈E8

∣∣∣∣ D(z)

DE8,σ,t(z)
− 1

∣∣∣∣ ⩽ 4ε



G.6. Sampling in the A8 lattice. There exists a special isometry between A8 and a

sublattice of E8. Indeed, if (ei)i denotes the canonical basis of R8, the vectors h =

(12 , . . .
1
2) and bi = ei + ei+1 for 1 ⩽ i ⩽ 7 all belong to E8, and their Gram matrix is

identical to the Gram matrix of the basis (f1− fi)1⩽i⩽8 of A8, where (fi)i is the canonical

basis of R9. As detA8 = 3 and E8 is unimodular, we expect only 3 tries in average

for a sample in E8 to belong in the lattice isometric to A8, which leads to the following

algorithm. The acceptance criteria is obtained by identifying the sublattice isometric to

A8, and the rest is the domain restriction approach from Section 3.2.

Algorithm 11: A8 sampler

Input: A parameter σ ⩾ max(ηε(D8), ηε(A8)) and a center t ∈ R3.

Output: v following distribution statistically close to DA8,σ,t

1 repeat

2 z← E8sampler(σ, t)

3 until z1 − z2 − · · · − z8 ∈ 3Z

4 return z

Proposition G.3. let D(z) the distribution of outputs of Algorithm 11. Then D(z) is

at statistical distance at most 10ε of DA8,σ,t. Moreover, we have

sup
z∈A8

∣∣∣∣ D(z)
DA8,σ,t(z)

− 1

∣∣∣∣ ⩽ 20ε

Proof. Let Λ be the sublattice of E8 generated by (h,b1, . . . ,b7) and u = e1−e2−· · · e8.
We show that Λ = {x ∈ E8 : ⟨x,u⟩ ∈ 3Z}, which means that Algorithm 11 outputs

vectors in the correct lattice. That Λ is included in this set is clear from its basis vectors.

For the reverse inclusion, let x be in the set, and let a1 = ⟨x,u⟩/3 ∈ Z. As x ∈ E8 in

particular, we also know that x is either in D8 either in h+D8. In the first case, we can

write x =
∑

i xiei with xi ∈ Z for all i, and such that
∑
xi = 2k for some k ∈ Z. and

then we have x1−k = 3
2a1 ∈ Z, so that a1 is even. Therefore, for 2 ⩽ i ⩽ 8, ai = xi−a1/2

is an integer. In the second case, x =
∑

i(xi+
1
2)ei with xi ∈ Z such that

∑
i xi = 2k for

some k ∈ Z. Then we have x1 − k = 3
2(a1 + 1) ∈ Z, so that ai is odd, which means that

ai = xi− (a1 +1)/2 is an integer. In each cases, we find that x = a1h+ a2b1 + · · · a8b7,

or equivalently, x ∈ Λ. The rest of the proof comes from from Proposition 3.1. ■



G.7. Sampling in the E7 lattice. We make use of the (dual covering) L = (E∨
7⊥Z) =

E8 ∪
(
1
2f + E8

)
where f = (0. . . . , 0, 1, 1)T ∈ Z8 (see [23, Chap.4, p.118]). Hence using

Algorithm 10 we can use our E8 sampler to sample into L and project orthogonaly onto

E∨
7 . We now use the fact that since E7 is integral it is contained in its dual and use the

Proposition 3.1. As |E7| = 2, the quotient E∨
7 /E7 is of cardinality 4, meaning that we

expect 4 repetitions of this process on average.

G.8. Smoothing parameter estimates for some exceptional latttices. We have

the following estimates for ε > 0:

• ηε(Zn) =
√

1
π (ln(

2n
ε ) + o(1/ε));

• for n ⩾ 5, ηε(Z
n) ⩽ ηε(Dn) =

√
1
π (ln(

2n
ε ) + o(1/ε)) ≈ ηε(Zn);

• ηε(An) =
√

n+1
n ·

√
1
π (ln(

2(n+1)
ε ) + o(1/ε)) ≈ λ1(A∨

n)
−1 · ηε(Zn);

• ηε(A∨
n) =

1√
2
·
√

1
π (ln(

n(n+1)
ε ) + o(1/ε)) ≈ λ1(An)

−1 · η2ε/(n+1)(Z
n)

The estimate of ηε(Z
n) is not new, but the proof strategy we give is.

Sketch. The three estimates follow the same pattern: identify the theta series θ of the

dual, find the reversion series S such that S(θ(z)−1) = z; then set z = exp(−πs2) and the

smoothing is reached when θ(z)− 1 = ε. A standard fact is that if h = h1z + h2z
2 + · · ·

is a power series, then there always exists another power series g = g1z + g2z
2 + · · ·

such that g(h(z)) = z. In other words, the existence of the reversion is no concern.

Plugging the expression of h and equating the coefficients gives an explicit formula for

the coefficient of g from those of h. In the general case, the ones on the expansion of g

are:

g1 = h−1
1 g3 = −h−5

1 (2h22 − h1h3)
g2 = −h−3

1 h2 g4 = −h−7
1 (5h1h2h3 − h21h4 − 5h32)

(12)

The interested reader can find a general expression for the n-th coefficient with Morse-

Feshbach’s formula. In the general case, the Gaussian mass does not exactly correspond

to a power series, even up to renormalization. This is not a concern as one can extend

the reversion approach to rational exponents (see Lemma G.1 below).

In our context where z = exp(−πs2), we only really care about the first few terms in

the expansion. As explained in Section 5, if S is the reversion of ρ1/s(Λ
∨)−1 = κzλ

2
1+· · · ,



where κ = κ(Λ∨) is the kissing number of the dual and λ1 = λ1(Λ
∨) its minimum in the

Euclidean norm, then the smoothing parameter is obtained as

ηε(Λ) =

√
1

π
ln

(
1

S(ε)

)
.

From the expression of the coefficient in the reversion, one checks that

S(ε) = κ−1ε
1

λ21 + · · ·

Checking the well-known theta series of these exceptional lattices in [9] is enough to

obtain our estimates. ■

Lemma G.1. Let Λ ⊂ Qm be any lattice, and let TΛ(q) = θΛ(q)− 1 = κ1q
λ1(Λ∨)2 + . . . .

There exists a unique series S(q) = (q/κ1)
1/λ1(Λ∨)2 + . . . such S(TΛ(q)) = q.

Proof. Since Λ is rational, there exists an integer d > 0 such that dΛ∨ ⊂ Zm. By

considering T (q) = TΛ(q
d2), we can assume without loss of generality that TΛ is a

power series, that is, all exponents are positive integers. We let n = d2λ1(Λ
∨)2, and

we consider now the formal series T (X) = κXn + . . . = κXn(1 + T̃ (X)) ∈ R[[X]]

defined by the coefficients of TΛ. We can define formally the n-th root of 1 + T̃ (X)

using the coefficients of the Taylor expansion of x 7→ x1/n. Then, the formal series

U(X) = κ1/nX(1 + T̃ (X))1/n ∈ R[[X]] is such that U(X)n = T (X), and its first term is

κ1/nX. We can apply formal series reversion: there exists a formal series U−1(X) such

that U−1(U(X)) = X. Now, the series S(X) = U−1(X1/n) ∈ R[[X1/n]] satisfies that

S(T (X)) = X. ■

G.9. Proofs of Section 5.

Proof of Proposition 5.1. Recall that for any n > 1, the An lattice admits the basis

An =



1 0 0 · · · 0

−1 1 0 · · · 0
... −1 . . .

. . .
...

0 0
. . . 1 0

0 0 · · · −1 1

0 0 · · · 0 −1


∈ Z(n+1)×n.



By assumption on q and k, we have in particular n = (k + 1)q + r = kq + q + r. There

exists a permutation on the columns of An that gives a reordered basis

Bn =



Ak C1

Ak C2

. . .
...

Ak Cq

· · · Cq+1 Ar


∈ Z(n+1)×n,

where

C1 = (ε
(1)
i,j ) ∈ Z(k+1)×q : ε

(1)
i,j =

1 (i, j) = (k + 1, 1)

0 otherwise,

Ct = (ε
(t)
i,j ) ∈ Z(k+1)×q for 1 < t ⩽ q : ε

(t)
i,j =


−1 (i, j) = (1, t− 1)

1 (i, j) = (k + 1, t)

0 otherwise,

Cq+1 = (ε
(q)
i,j ) ∈ Z(r+1)×q : ε

(q)
i,j =

−1 (i, j) = (1, q)

0 otherwise.
.

Immediately, the result follows. ■

Proof of Theorem 5.2. Let 0 = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λq ⊂ An be the filtration given by

Proposition 5.1. Since we use the Klein sampler as a base sampler in the quotient Λq,

the result holds using Theorem 6 when

σ ⩾ max
{
σ′, ηε(Ak), max

1⩽i⩽q+r
∥b∗

kq+i∥ηε(Z)
}

where σ′ is required by the sampling over Ak and b∗
i is the i-th vector in the Gram-

Schmidt orthogonalization of Bn. We implement the sampling over Ak with the tailored

A8 sampler Algorithm 11 that just needs σ′ ⩾ ηε(A8). Therefore it suffices to estimate

∥b∗
i ∥. A routine computation verifies that the Gram-Schmidt orthogonalization of An is

Ãn =



1 1
2 · · · 1

n

−1 1
2 · · · 1

n

0 −1 · · · 1
n

...
...

. . . 1
n

0 0 · · · −1


∈ Q(n+1)×n,



thus the last Gram-Schmidt norm is
√

(n+ 1)/n. Since orthogonal projections shrink

norms, we have ∥b∗
kq+i∥ ⩽

√
(ki+ 1)/(ki) for 1 ⩽ i ⩽ q and ∥b∗

kq+i∥ ⩽
√

(kq + i)/(kq)

for q+1 ⩽ i ⩽ q+ r. Immediately the minimal achieved quality factor for the final block

is bounded by
√
(k + 1)/k · ηε(Zq+r). ■
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